Question 1.4: Given vectors A = 3ax + 4ay + az and B = 2ay - 5az, find the...

Given vectors A=3a_{x}+4a_{y}+a_{z} and B=2a_{y}-5a_{z}, find the angle between A and B.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The angle \theta_{AB} can be found by using either dot product or cross product.

A \cdot B=\left(3, 4, 1\right)\cdot \left(0, 2, -5\right)= 0 + 8 -5=3

\left|A\right|=\sqrt{3^{2}+4^{2}+1^{2}}=\sqrt{26}

\left|B\right|=\sqrt{0^{2}+2^{2}+\left(-5\right) ^{2}}=\sqrt{29}

\cos \theta_{AB}=\frac{A\cdot B}{\left|A\right|\left|B\right|}=\frac{3}{\sqrt{\left(26\right)\left(29\right) }}=0.1092

\theta_{AB}=\cos^{-1}0.1092=83.73^{\circ}

Alternatively:

A\times B=\left | \begin{matrix} a_{x} & a_{y} & a_{z} \\ 3 & 4 & 1 \\ 0 & 2 & -5 \end{matrix} \right | =\left(-20-2\right)a_{x}+\left(0+15\right)a_{y}+\left(6-0\right)a_{z} =\left(-22,15,6\right)

\left|A\times B\right|=\sqrt{\left(-22\right)^{2}+15^{2}+6^{2} }=\sqrt{745}

\sin \theta_{AB}=\frac{\left|A\times B\right| }{\left|A\right| \left|B\right| }=\frac{\sqrt{745}}{\sqrt{\left(26\right)\left(29\right) }}=0.994

\theta_{AB}=\sin^{-1}0.994=83.73^{\circ}

Related Answered Questions