Question 7.117: A 0.2 m^3 initially empty container is filled with water fro...

A 0.2 m ^{3} initially empty container is filled with water from a line at 500 kPa, 200°C until there is no more flow. Assume the process is adiabatic and find the final mass, final temperature and the total entropy generation.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

C.V. The container volume and any valve out to line.

Continuity Eq.4.15:          m _{2}- m _{1}= m _{2}= m _{ i }

Energy Eq.4.16:                m _{2} u _{2}- m _{1} u _{1}= m _{2} u _{2}={ }_{1} Q _{2}-{ }_{1} W _{2}+ m _{ i } h _{ i }= m _{ i } h _{ i }

Entropy Eq.7.12:              m _{2} s _{2}- m _{1} s _{1}= m _{2} s _{2}=\int d Q / T +{ }_{1} S _{2  gen }+ m _{ i } s _{ i }

Process:    Adiabatic  { }_{1} Q _{2}=0 ,  Rigid  { }_{1} W _{2}=0    Flow stops      P _{2}= P _{\text {line }}

State i:    h _{ i }=2855.37   kJ / kg ; \quad s _{ i }=7.0592   kJ / kg K

State 2:    500   kPa , \quad u _{2}= h _{ i }=2855.37   kJ / kg    => Table B.1.3

\begin{array}{l}T _{2} \cong 3 3 2 . 9 ^{\circ} C , \quad s _{2}=7.5737   kJ / kg , \quad v _{2}=0.55387 m ^{3} / kg\\m _{2}= V / v _{2}=0.2 / 0.55387= 0 . 3 6 1   kg\end{array}

From the entropy equation

\begin{aligned}{ }_{1} S _{2  \text { gen }}  &= m _{2} s _{2}- m _{2} s _{ i } \\&=0.361(7.5737-7.0592)= 0 . 1 8 6   k J / K\end{aligned}

 

 

………………………………………..

Eq.4.15 : 1=\frac{\dot{m}_{1}}{\dot{m}_{3}}+\frac{\dot{m}_{2}}{\dot{m}_{3}}

Eq.4.16 : 0=\frac{\dot{m}_{1}}{\dot{m}_{3}} h_{1}+\frac{\dot{m}_{2}}{\dot{m}_{3}} h_{2}-h_{3}+\dot{Q} / \dot{m}_{3}

Eq.7.12 : \left(m_{2} s_{2}-m_{1} s_{1}\right)_{ c . v .}=\sum m_{i} s_{i}-\sum m_{e} s_{e}+\int_{0}^{t} \sum_{ c.s. } \frac{\dot{Q}_{ c.v. }}{T} d t+{ }_{1} S_{2 gen }

 

1
2
1

Related Answered Questions