A 0.2 m ^{3} initially empty container is filled with water from a line at 500 kPa, 200°C until there is no more flow. Assume the process is adiabatic and find the final mass, final temperature and the total entropy generation.
A 0.2 m ^{3} initially empty container is filled with water from a line at 500 kPa, 200°C until there is no more flow. Assume the process is adiabatic and find the final mass, final temperature and the total entropy generation.
C.V. The container volume and any valve out to line.
Continuity Eq.4.15: m _{2}- m _{1}= m _{2}= m _{ i }
Energy Eq.4.16: m _{2} u _{2}- m _{1} u _{1}= m _{2} u _{2}={ }_{1} Q _{2}-{ }_{1} W _{2}+ m _{ i } h _{ i }= m _{ i } h _{ i }
Entropy Eq.7.12: m _{2} s _{2}- m _{1} s _{1}= m _{2} s _{2}=\int d Q / T +{ }_{1} S _{2 gen }+ m _{ i } s _{ i }
Process: Adiabatic { }_{1} Q _{2}=0 , Rigid { }_{1} W _{2}=0 Flow stops P _{2}= P _{\text {line }}
State i: h _{ i }=2855.37 kJ / kg ; \quad s _{ i }=7.0592 kJ / kg K
State 2: 500 kPa , \quad u _{2}= h _{ i }=2855.37 kJ / kg => Table B.1.3
\begin{array}{l}T _{2} \cong 3 3 2 . 9 ^{\circ} C , \quad s _{2}=7.5737 kJ / kg , \quad v _{2}=0.55387 m ^{3} / kg\\m _{2}= V / v _{2}=0.2 / 0.55387= 0 . 3 6 1 kg\end{array}From the entropy equation
\begin{aligned}{ }_{1} S _{2 \text { gen }} &= m _{2} s _{2}- m _{2} s _{ i } \\&=0.361(7.5737-7.0592)= 0 . 1 8 6 k J / K\end{aligned}
………………………………………..
Eq.4.15 : 1=\frac{\dot{m}_{1}}{\dot{m}_{3}}+\frac{\dot{m}_{2}}{\dot{m}_{3}}
Eq.4.16 : 0=\frac{\dot{m}_{1}}{\dot{m}_{3}} h_{1}+\frac{\dot{m}_{2}}{\dot{m}_{3}} h_{2}-h_{3}+\dot{Q} / \dot{m}_{3}
Eq.7.12 : \left(m_{2} s_{2}-m_{1} s_{1}\right)_{ c . v .}=\sum m_{i} s_{i}-\sum m_{e} s_{e}+\int_{0}^{t} \sum_{ c.s. } \frac{\dot{Q}_{ c.v. }}{T} d t+{ }_{1} S_{2 gen }