Question 4.12: Given the potential V = 10/r^2 sinθ cosφ, (a) Find the elect...

Given the potential V=\frac{10}{r^{2}}\sin\theta\cos\phi,

(a) Find the electric flux density D at (2, \pi/2, 0).

(b) Calculate the work done in moving a 10\mu C charge from point A(1, 30°, 120°) to B(4, 90°, 60°).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)

D=\varepsilon_{o}E

But

E=-\nabla V=-\left[\frac{\partial V}{\partial r}a_{r}+ \frac{1}{r}\frac{\partial V}{\partial \theta}a_{\theta}+\frac{1}{r\sin\theta}\frac{\partial V}{\partial \phi}a_{\phi} \right]

=\frac{20}{r^{3}}\sin\theta\cos\phi a_{r}-\frac{10}{r^{3}}\cos\theta\cos\phi a_{\theta}+\frac{10}{r^{3}}\sin\phi a_{\phi}

At (2, \pi/2, 0)

D=\varepsilon_{o}E\left(r=2,\theta=\pi/2,\phi=0\right)=\varepsilon_{o}\left(\frac{20}{8}a_{r}-0a_{\theta}+0a_{\phi}\right)

=2.5\varepsilon_{o}a_{r}C/m^{2}=22.1a_{r}pC/m^{2}

(b) The work done can be found in two ways, using either E or V.

Method 1:

W=-Q\int_{L}E\cdot dl

or

-\frac{W}{Q}=\int_{L}E\cdot dl

and because the electrostatic field is conservative, the path of integration is immaterial. Hence the work done in moving Q from A(1, 30°, 120°) to B(4, 90°, 60°) is the same as that in moving Q from A to A^{'}, from A^{'} to B^{'}, and from B^{'} to B, where

\begin{matrix} A\left(1,30^{\circ},120^{\circ}\right) & & B\left(4,90^{\circ},60^{\circ}\right) \\ \downarrow dl=dra_{r} & dl=rd\theta a_{\theta} & \uparrow dl=r\sin\theta d\phi a_{\phi} \\A^{'}\left(4,30^{\circ},120^{\circ}\right) & \rightarrow & B^{'}\left(4,90^{\circ},120^{\circ}\right) \end{matrix}

That is, instead of being moved directly from A to B, Q is moved from A\rightarrow A^{'},A^{'}\rightarrow B^{'},B^{'}\rightarrow B, so that only one variable is changed at a time. This makes the line integral much easier to evaluate. Thus

\frac{-W}{Q}=-\frac{1}{Q}\left(W_{AA^{'}}+W_{A^{'}B^{'}}+W_{B^{'}B}\right)

=\left(\int_{AA^{'}}+\int_{A^{'}B^{'}}+\int_{B^{'}B}\right)E\cdot dl

=\int_{r=1}^{4}\frac{20\sin\theta\cos\phi}{r^{3}}dr|_{\theta=30^{\circ},\phi=120^{\circ}}+\int_{\theta=30^{\circ}}^{90^{\circ}}\frac{-10\cos\theta\cos\phi}{r^{3}}rd\theta|_{r=4,\phi=120^{\circ}}+\int_{\phi=120^{\circ}}^{60^{\circ}}\frac{10\sin\phi}{r^{3}}r\sin\theta d\phi|_{r=4,\theta=90^{\circ}}

=20\left(\frac{1}{2} \right)\left(\frac{-1}{2} \right) \left[-\frac{1}{2r^{2}}|_{r=1}^{4} \right]- \frac{10}{16}\frac{\left(-1\right) }{2}\sin\theta|_{30^{\circ}}^{90^{\circ}}+\frac{10}{16}\left(1\right)\left[-\cos\phi|_{120^{\circ}}^{60^{\circ}}\right]

-\frac{W}{Q}=\frac{-75}{32}+\frac{5}{32}-\frac{10}{16}

or

W=\frac{45}{16}Q=28.125\mu J

 

Method 2:
Since V is known, this method is much easier.

W=-Q\int_{A}^{B}E\cdot dl=QV_{AB}=Q\left(V_{B}-V_{A}\right)

=10\left(\frac{10}{16}\sin 90^{\circ}\cos 60^{\circ} -\frac{10}{1}\sin 30^{\circ}\cos120^{\circ} \right)\cdot 10^{-6}

=10\left(\frac{10}{32} -\frac{-5}{2} \right)10^{-6}=28.125\mu J  as obtained before

Related Answered Questions