Question 4.15: A charge distribution with spherical symmetry has density ρv...

A charge distribution with spherical symmetry has density

\rho _{v}=\begin{cases}\rho_{o}, & 0\leq r\leq R \\0, & r\gt R\end{cases}

Determine V everywhere and the energy stored in region r < R.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The D field has already been found in Section 4.6D using Gauss’s law.

(a) For r\geq R,  E=\frac{\rho_{o}R^{3}}{3\varepsilon_{o}r^{2}}a_{r}

Once E is known, V is determined as

V=-\int E\cdot dl=-\frac{\rho_{o}R^{3}}{3\varepsilon_{o}}\int\frac{1}{r^{2}}dr=\frac{\rho_{o}R^{3}}{3\varepsilon_{o}r}+C_{1},      r\geq R

Since V(r=\infty)=0,  C_{1}=0

(b) For r\leq R,  E=\frac{\rho_{o}r}{3\varepsilon_{o}}a_{r}

Hence

V=-\int E\cdot dl=-\frac{\rho_{o}}{3\varepsilon_{o}}\int rdr=-\frac{\rho_{o}r^{2}}{6\varepsilon_{o}}+C_{2}

From part (a) V\left(r=R\right) =\frac{\rho_{o}R^{2}}{3\varepsilon_{o}} Hence,

\frac{R^{2}\rho_{o}}{3\varepsilon_{o}}=-\frac{R^{2}\rho_{o}}{6\varepsilon_{o}}+C_{2}\rightarrow C_{2}=\frac{R^{2}\rho_{o}}{2\varepsilon_{o}}

and

V=\frac{\rho_{o}}{6\varepsilon_{o}}\left(3R^{2}-r^{2}\right)

Thus from parts (a) and (b)

V=\begin{cases}\frac{\rho_{o}R^{3}}{3\varepsilon_{o}r}, & r\geq R \\ \frac{\rho_{o}}{6\varepsilon_{o}}\left(3R^{2}-r^{2}\right), & r\leq R \end{cases}

(c) The energy stored is given by

W=\frac{1}{2}\int_{v} D\cdot Edv=\frac{1}{2}\varepsilon_{o}\int_{v}E^{2}dv

For r\leq R

E=\frac{\rho_{o}r}{3\varepsilon_{o}}a_{r}

Hence

W=\frac{1}{2}\varepsilon_{o}\frac{\rho^{2}_{o}}{9\varepsilon_{o}^{2}}\int_{r=0}^{R}\int_{\theta=0}^{\pi}\int_{\phi=0}^{2\pi}r^{2}\cdot r^{2}\sin\theta d\phi d\theta dr

=\frac{\rho^{2}_{o}}{18\varepsilon_{o}}4\pi\cdot \frac{r^{5}}{5}|_{0}^{R}=\frac{2\pi\rho_{o}^{2}R^{5}}{45\varepsilon_{o}}J

Related Answered Questions