Question 6.2: The xerographic copying machine is an important application ...

The xerographic copying machine is an important application of electrostatics. The surface of the photoconductor is initially charged uniformly as in Figure 6.2(a). When light from the document to be copied is focused on the photoconductor, the charges on the lower surface combine with those on the upper surface to neutralize each other. The image is developed by pouring a charged black powder over the surface of the photoconductor. The electric field attracts the charged powder, which is later transferred to paper and melted to form a permanent image. We want to determine the electric field below and above the surface of the photoconductor.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Consider the modeled version of Figure 6.2(a) shown in Figure 6.2(b). Since \rho_{v}=0 in this case, we apply Laplace’s equation. Also the potential depends only on x. Thus

\nabla^2 V=\frac{d^{2}V}{dx^{2}}=0

Integrating twice gives

V=Ax+B

Let the potentials above and below x=a be V_{1} and V_{2}, respectively:

V_{1}=A_{1}x+B_{1},       x\gt a                                                                      (6.2.1a)

V_{2}=A_{2}x+B_{2},       x\lt a                                                                     (6.2.1b)

The boundary conditions at the grounded electrodes are

V_{1}(x=d)=0                                                                            (6.2.2a)

V_{2}(x=0)=0                                                                            (6.2.2b)

At the surface of the photoconductor

V_{1}(x=a)=V_{2}(x=a)                                                                               (6.2.3a)

D_{1n}-D_{2n}=\rho_{S}|_{x=a}                                                                                (6.2.3b)

We use the four conditions in eqs. (6.2.2) and (6.2.3) to determine the four unknown constants A_{1},  A_{2},  B_{1}, and B_{2}. From eqs. (6.2.1) and (6.2.2),

0=A_{1}d+B_{1}\rightarrow B_{1}=-A_{1}d                                                                     (6.2.4a)

0=0+B_{2}\rightarrow B_{2}=0                                                                              (6.2.4b)

From eqs. (6.2.1) and (6.2.3a)

A_{1}a+B_{1}=A_{2}a                                                                               (6.2.5)

To apply eq. (6.2.3b), recall that D=\varepsilon E=-\varepsilon\nabla V so that

\rho_{S}=D_{1n}-D_{2n}=\varepsilon_{1}E_{1n}-\varepsilon_{2}E_{2n}=-\varepsilon_{1}\frac{dV_{1}}{dx}+\varepsilon_{2}\frac{dV_{2}}{dx}

or

\rho_{S}=-\varepsilon _{1}A_{1}+\varepsilon_{2}A_{2}                                                                     (6.2.6)

Solving for A_{1} and A_{2} in eqs. (6.2.4) to (6.2.6), we obtain

E_{1}=-A_{1}a_{x}=\frac{\rho_{S}a_{x}}{\varepsilon _{1}\left[1+\frac{\varepsilon _{2}}{\varepsilon _{1}}\frac{d}{a}-\frac{\varepsilon _{2}}{\varepsilon_{1}} \right]},       a\leq x\leq d

E_{2}=-A_{2}a_{x}=\frac{-\rho_{S}\left(\frac{d}{a}-1\right)a_{x}}{\varepsilon _{1}\left[1+\frac{\varepsilon _{2}}{\varepsilon _{1}}\frac{d}{a}-\frac{\varepsilon _{2}}{\varepsilon_{1}} \right]},       0\leq x\leq a

6.2b

Related Answered Questions