Question 6.6: Find the potential distribution in Example 6.5 if Vo is not ...

Find the potential distribution in Example 6.5 if V_{o} is not constant but

(a) V_{o}=10\sin 3\pi x/b,y=a,0\leq x\leq b

(b) V_{o}=2\sin\frac{\pi x}{b}+\frac{1}{10}\sin\frac{5\pi x}{b},y=a,0\leq x\leq b

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) In Example 6.5, every step before eq. (6.5.19) remains the same; that is, the solution is of the form

V(x,y)=\sum\limits_{n=1}^{\infty}c_{n}\sin\frac{n\pi x}{b}\sinh\frac{n\pi y}{b}                                                                        (6.6.1)

in accordance with eq. (6.5.18).

V(x,y)=\sum\limits_{n=1}^{\infty}c_{n}\sin\frac{n\pi x}{b}\sinh\frac{n\pi y}{b}

But instead of eq. (6.5.19)

V(x,y=a)=V_{o}=\sum\limits_{n=1}^{\infty}c_{n}\sin\frac{n\pi x}{b}\sinh\frac{n\pi a}{b}

we now have

V(y=a)=V_{o}=10\sin\frac{3\pi x}{b}=\sum\limits_{n=1}^{\infty}c_{n}\sin\frac{n\pi x}{b}\sinh\frac{n\pi a}{b}

By equating the coefficients of the sine terms on both sides, we obtain

c_{n}=0,       n\neq 3

For n=3

10=c_{3}\sinh\frac{3\pi a}{b}

or

c_{3}=\frac{10}{\sinh\frac{3\pi a}{b}}

Thus the solution in eq. (6.6.1) becomes

V(x,y)=10\sin\frac{3\pi x}{b}\frac{\sinh\frac{3\pi y}{b}}{\sinh\frac{3\pi a}{b}}

(b) Similarly, instead of eq. (6.5.19), we have

V_{o}=V(y=a)

or

2\sin\frac{\pi x}{b}+\frac{1}{10}\sin\frac{5\pi x}{b}=\sum\limits_{n=1}^{\infty}c_{n}\sin\frac{n\pi x}{b}\sinh\frac{n\pi a}{b}

Equating the coefficient of the sine terms:

c_{n}=0,       n\neq 1,5

For n=1

2=c_{1}\sinh\frac{\pi a}{b}   or  c_{1}=\frac{2}{\sinh\frac{\pi a}{b}}

For n=5

\frac{1}{10}=c_{5}\sinh\frac{5\pi a}{b}   or   c_{5}=\frac{1}{10\sinh\frac{5\pi a}{b}}

Hence

V(x,y)=\frac{2\sin\frac{\pi x}{b}\sinh\frac{\pi y}{b}}{\sinh\frac{\pi a}{b}}+\frac{\sin\frac{5\pi x}{b}\sinh\frac{5\pi y}{b}}{10\sinh\frac{5\pi a}{b}}

Related Answered Questions