Question 6.12: Determine the capacitance of each of the capacitors in Figur...

Determine the capacitance of each of the capacitors in Figure 6.20. Take \varepsilon_{r1}=4,  \varepsilon_{r2}=6,  d=5  mm,  S=30  cm^{2}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Since D and E are normal to the dielectric interface, the capacitor in Figure 6.20(a) can be treated as consisting of two capacitors C_{1} and C_{2} in series as in Figure 6.16(a).

C_{1}=\frac{\varepsilon _{o}\varepsilon _{r1}S}{d/2}=\frac{2\varepsilon_{o}\varepsilon_{r1}S}{d},       C_{2}=\frac{2\varepsilon_{o}\varepsilon_{r2}S}{d}

The total capacitor C is given by

C=\frac{C_{1}C_{2}}{C_{1}+C_{2}}=\frac{2\varepsilon_{o}S}{d}\frac{(\varepsilon_{r1}\varepsilon_{r2})}{\varepsilon_{r1}+\varepsilon_{r2}}

=2\cdot\frac{10^{-9}}{36\pi}\cdot\frac{30\times10^{-4}}{5\times10^{-3}}\cdot\frac{4\times6}{10}                                                                                  (6.12.1)

C=25.46 pF

(b) In this case, D and E are parallel to the dielectric interface. We may treat the capacitor as consisting of two capacitors C_{1} and C_{2} in parallel (the same voltage across C_{1} and C_{2}) as in Figure 6.16(b).

C_{1}=\frac{\varepsilon _{o}\varepsilon _{r1}S/2}{d}=\frac{\varepsilon_{o}\varepsilon_{r1}S}{2d},       C_{2}=\frac{\varepsilon_{o}\varepsilon_{r2}S}{2d}

The total capacitance is

C=C_{1}+C_{2}=\frac{\varepsilon_{o}S}{2d}(\varepsilon_{r1}+\varepsilon_{r2})

=\frac{10^{-9}}{36\pi}\cdot\frac{30\times10^{-4}}{2\cdot(5\times10^{-3})}\cdot10                                                                               (6.12.2)

C=26.53 pF

Notice that when \varepsilon_{r1}=\varepsilon_{r2}=\varepsilon_{r}, eqs. (6.12.1) and (6.12.2) agree with eq. (6.22)

C=\frac{Q}{V}=\frac{\varepsilon S}{d}

as expected.

لقطة الشاشة 2021-06-23 042305
لقطة الشاشة 2021-06-23 042328

Related Answered Questions