Determine the capacitance of each of the capacitors in Figure 6.20. Take \varepsilon_{r1}=4, \varepsilon_{r2}=6, d=5 mm, S=30 cm^{2}.
Determine the capacitance of each of the capacitors in Figure 6.20. Take \varepsilon_{r1}=4, \varepsilon_{r2}=6, d=5 mm, S=30 cm^{2}.
(a) Since D and E are normal to the dielectric interface, the capacitor in Figure 6.20(a) can be treated as consisting of two capacitors C_{1} and C_{2} in series as in Figure 6.16(a).
C_{1}=\frac{\varepsilon _{o}\varepsilon _{r1}S}{d/2}=\frac{2\varepsilon_{o}\varepsilon_{r1}S}{d}, C_{2}=\frac{2\varepsilon_{o}\varepsilon_{r2}S}{d}
The total capacitor C is given by
C=\frac{C_{1}C_{2}}{C_{1}+C_{2}}=\frac{2\varepsilon_{o}S}{d}\frac{(\varepsilon_{r1}\varepsilon_{r2})}{\varepsilon_{r1}+\varepsilon_{r2}}
=2\cdot\frac{10^{-9}}{36\pi}\cdot\frac{30\times10^{-4}}{5\times10^{-3}}\cdot\frac{4\times6}{10} (6.12.1)
C=25.46 pF
(b) In this case, D and E are parallel to the dielectric interface. We may treat the capacitor as consisting of two capacitors C_{1} and C_{2} in parallel (the same voltage across C_{1} and C_{2}) as in Figure 6.16(b).
C_{1}=\frac{\varepsilon _{o}\varepsilon _{r1}S/2}{d}=\frac{\varepsilon_{o}\varepsilon_{r1}S}{2d}, C_{2}=\frac{\varepsilon_{o}\varepsilon_{r2}S}{2d}
The total capacitance is
C=C_{1}+C_{2}=\frac{\varepsilon_{o}S}{2d}(\varepsilon_{r1}+\varepsilon_{r2})
=\frac{10^{-9}}{36\pi}\cdot\frac{30\times10^{-4}}{2\cdot(5\times10^{-3})}\cdot10 (6.12.2)
C=26.53 pF
Notice that when \varepsilon_{r1}=\varepsilon_{r2}=\varepsilon_{r}, eqs. (6.12.1) and (6.12.2) agree with eq. (6.22)
C=\frac{Q}{V}=\frac{\varepsilon S}{d}
as expected.