(a) This is an initial-value problem because initial values are given. According to Newton’s second law of motion
F=ma=QE
where a is the acceleration of the particle. Hence
a=\frac{QE}{m}=\frac{3}{2}(12a_{x}+10a_{y})=18a_{x}+15a_{y} m/s^{2}
a=\frac{du}{dt}=\frac{d}{dt}(u_{x},u_{y},u_{z})=18a_{x}+15a_{y}
(b) Equating components and then integrating, we obtain
\frac{du_{x}}{dt}=18\rightarrow u_{x}=18t+A (8.1.1)
\frac{du_{y}}{dt}=15\rightarrow u_{y}=15t+B (8.1.2)
\frac{du_{z}}{dt}=0\rightarrow u_{z}=C (8.1.3)
where A, B, and C are integration constants. But at t=0, u=4a_{x}+3a_{z}. Hence,
u_{x}(t=0)=4\rightarrow 4=0+A or A=4
u_{y}(t=0)=0\rightarrow 0=0+B or B=0
u_{z}(t=0)=3\rightarrow 3=C
Substituting the values of A, B, and C into eqs. (8.1.1) to (8.1.3) gives
u(t)=(u_{x},u_{y},u_{z})=(18t+4,15t,3)
Hence
u(t=1s)=22a_{x}+15a_{y}+3a_{z}m/s
(c) Kinetic energy
(K.E.)=\frac{1}{2}m|u|^{2}=\frac{1}{2}(2)(22^{2}+15^{2}+3^{2})=718J
(d)
u=\frac{dl}{dt}=\frac{d}{dt}(x,y,z)=(18t+4,15t,3)
Equating components yields
\frac{dx}{dt}=u_{x}=18t+4\rightarrow x=9t^{2}+4t+A_{1} (8.1.4)
\frac{dy}{dt}=u_{y}=15t \rightarrow y=7.5t^{2}+B_{1} (8.1.5)
\frac{dz}{dt}=u_{z}=3\rightarrow z=3t+C_{1} (8.1.6)
At t=0, (x,y,z)=(1,-2,0); hence
x(t=0)=1\rightarrow 1=0+A_{1} or A_{1}=1
y(t=0)=-2\rightarrow -2=0+B_{1} or B_{1}=-2
z(t=0)=0\rightarrow 0=0+C_{1} or C_{1}=0
Substituting the values of A_{1}, B_{1}, and C_{1} into eqs. (8.1.4) to (8.1.6), we obtain
(x,y,z)=(9t^{2}+4t+1,7.5t^{2}-2,3t) (8.1.7)
Hence, at t=1, (x,y,z)=(14,5.5,3).
By eliminating t in eq. (8.1.7), the motion of the particle may be described in terms of x, y, and z.