Question 7.62: Determine the shear-stress variation over the cross section ...

Determine the shear-stress variation over the cross section of the thin-walled tube as a function of elevation y and show that  \tau _{\max} = 2 V/A , where  A=2\pi rt . Hint: Choose a differential area element dA = Rt dθ . Using  dQ = y dA , formulate Q for a circular section from θ to (π – θ ) and show that Q=2R^{2}t\cos \theta   , where  \cos \theta =\sqrt{R^{2}-y^{2}}/R .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
d A = R   t   d \theta

 

d Q=y   d   A =   y    R   t   d \theta

 

Here  y=R \sin \theta

 

Therefore  d Q=R^{2} t \sin \theta   d \theta

 

Q=\int_{\theta}^{\pi-\theta} R^{2} t \sin \theta   d \theta=\left.R^{2} t(-\cos \theta)\right|_{\theta} ^{\pi-\theta}

 

 

\quad=R^{2} t[-\cos (\pi-\theta)-(-\cos \theta)]=2 R^{2} t \cos \theta 

 

d I=y^{2} d A=y^{2} R t d \theta=R^{3} t \sin ^{2} \theta d \theta

 

I=\int_{0}^{2 \pi} R^{3} t \sin ^{2} \theta d \theta=R^{3} t \int_{0}^{2 \pi} \frac{(1-\cos 2 \theta)}{2} d \theta

 

\quad=\left.\frac{R^{3} t}{2}\left[\theta-\frac{\sin 2 \theta}{2}\right]\right|_{0} ^{2 \pi}=\frac{R^{3} t}{2}[2 \pi-0]=\pi R^{3} t

 

\tau=\frac{V Q}{I t}=\frac{V\left(2 R^{2} t \cos \theta\right)}{\pi R^{3} t(2 t)}=\frac{V \cos \theta}{\pi R t}

 

Here  \cos \theta=\frac{\sqrt{R^{2}-y^{2}}}{R}

 

\tau=\frac{V}{\pi R^{2} t} \sqrt{R^{2}-y^{2}}

 

\tau_{\max } \text { occurs at } y=0 ; therefore

 

\tau_{\max }=\frac{V}{\pi R t}

 

A=2 \pi R t ;  therefore

 

\tau_{\max }=\frac{2 V}{A} \quad \mathbf{Q E D}

Related Answered Questions