Question 7.234E: Repeat Problem 7.199E for a pump/compressor isentropic effic...

Repeat Problem 7.199E for a pump/compressor isentropic efficiency of 70%.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

C.V.: Pump/Compressor, \dot{ m }=1   lbm / s,  R-410A

 

a) State 1: Table F.9.1,  x _{1}=1.0        Saturated vapor,    P _{1}= P _{ g }=76.926 \text { psia },

h _{1}= h _{ g }=118.21   Btu / lbm ,      s _{1}= s _{ g }=0.2535   Btu / lbm  R

Ideal Compressor is isentropic,  s _{2}= s _{1}=0.2535   Btu / lbm  R

h _{2}=134.54   Btu / lbm ,      T _{2}=130.5   F

Energy Eq.4.13:      q _{ c }+ h _{1}= h _{2}+ w _{ c } ; \quad q _{ c }=0

w _{ cs }= h _{1}- h _{2}=118.21-134.54=-16.33   Btu / lbm;

Now the actual compressor

w _{ c , AC }= w _{ cs } / \eta=-23.33= h _{1}- h _{2  AC}

 

h _{2, AC }=134.54+23.33=157.87 \Rightarrow T _{2}= 2 1 7   F

 

\Rightarrow \quad \dot{ W }_{ C \text { in }}=\dot{ m }\left(- w _{ C }\right)=23.3   Btu / s = 3 3   hp

 

b) State 1:  T _{1}=10 F , x _{1}=0        Saturated liquid. This is a pump.

P _{1}=76.926   psia ,      h _{1}= h _{ f }=17.0   Btu / lbm ,     v _{1}= v _{ f }=0.01316   ft ^{3} / lbm

Energy Eq.4.13:        q _{ p }+ h _{1}= h _{2}+ w _{ p } ; \quad q _{ p }=0

Ideal pump is isentropic and the liquid is incompressible, Eq.7.18:

\begin{aligned}w _{ ps }=&-\int v dP =- v _{1}\left( P _{2}- P _{1}\right)=-0.01316(300-76.926) 144 \\&=-422.73   lbf – ft / lbm =-0.543   Btu / lbm\end{aligned}

Now the actual pump

\begin{array}{l}w_{c, A C}=w_{c s} / \eta=-0.776=h_{1}-h_{2  AC}  \\h_{2}=h_{1}-w_{p}=17.0-(-0.776)=17.776   Btu / lbm ,\end{array}

Assume State 2 is approximately a saturated liquid  \Rightarrow T _{2} \cong 1 2 . 2   F

\dot{ W }_{ P \text { in }}=\dot{ m }\left(- w _{ P }\right)=1(0.776)= 0 . 7 7 6   Btu / s = 0 . 9 9   hp

 

……………………………………

Eq.4.13 : q+h_{i}+\frac{ V _{i}^{2}}{2}+g Z_{i}=h_{e}+\frac{ V _{e}^{2}}{2}+g Z_{e}+w

Eq.7.18 :
\begin{aligned}w &=-\int_{i}^{e} v d P \quad \text { and } \quad P v^{n}=\text { constant }=C^{n} \\w &=-\int_{i}^{e} v d P=-C \int_{i}^{e} \frac{d P}{P^{1 / n}} \\&=-\frac{n}{n-1}\left(P_{e} v_{e}-P_{i} v_{i}\right)=-\frac{n R}{n-1}\left(T_{e}-T_{i}\right)\end{aligned}

 

1
F.9.1
F.9.1'
F.9.1''
F.9.1'''

Related Answered Questions