Repeat Problem 7.199E for a pump/compressor isentropic efficiency of 70%.
Repeat Problem 7.199E for a pump/compressor isentropic efficiency of 70%.
C.V.: Pump/Compressor, \dot{ m }=1 lbm / s, R-410A
a) State 1: Table F.9.1, x _{1}=1.0 Saturated vapor, P _{1}= P _{ g }=76.926 \text { psia },
h _{1}= h _{ g }=118.21 Btu / lbm , s _{1}= s _{ g }=0.2535 Btu / lbm RIdeal Compressor is isentropic, s _{2}= s _{1}=0.2535 Btu / lbm R
h _{2}=134.54 Btu / lbm , T _{2}=130.5 FEnergy Eq.4.13: q _{ c }+ h _{1}= h _{2}+ w _{ c } ; \quad q _{ c }=0
w _{ cs }= h _{1}- h _{2}=118.21-134.54=-16.33 Btu / lbm;
Now the actual compressor
w _{ c , AC }= w _{ cs } / \eta=-23.33= h _{1}- h _{2 AC}h _{2, AC }=134.54+23.33=157.87 \Rightarrow T _{2}= 2 1 7 F
\Rightarrow \quad \dot{ W }_{ C \text { in }}=\dot{ m }\left(- w _{ C }\right)=23.3 Btu / s = 3 3 hp
b) State 1: T _{1}=10 F , x _{1}=0 Saturated liquid. This is a pump.
P _{1}=76.926 psia , h _{1}= h _{ f }=17.0 Btu / lbm , v _{1}= v _{ f }=0.01316 ft ^{3} / lbmEnergy Eq.4.13: q _{ p }+ h _{1}= h _{2}+ w _{ p } ; \quad q _{ p }=0
Ideal pump is isentropic and the liquid is incompressible, Eq.7.18:
\begin{aligned}w _{ ps }=&-\int v dP =- v _{1}\left( P _{2}- P _{1}\right)=-0.01316(300-76.926) 144 \\&=-422.73 lbf – ft / lbm =-0.543 Btu / lbm\end{aligned}Now the actual pump
\begin{array}{l}w_{c, A C}=w_{c s} / \eta=-0.776=h_{1}-h_{2 AC} \\h_{2}=h_{1}-w_{p}=17.0-(-0.776)=17.776 Btu / lbm ,\end{array}Assume State 2 is approximately a saturated liquid \Rightarrow T _{2} \cong 1 2 . 2 F
\dot{ W }_{ P \text { in }}=\dot{ m }\left(- w _{ P }\right)=1(0.776)= 0 . 7 7 6 Btu / s = 0 . 9 9 hp
……………………………………
Eq.4.13 : q+h_{i}+\frac{ V _{i}^{2}}{2}+g Z_{i}=h_{e}+\frac{ V _{e}^{2}}{2}+g Z_{e}+w
Eq.7.18 :
\begin{aligned}w &=-\int_{i}^{e} v d P \quad \text { and } \quad P v^{n}=\text { constant }=C^{n} \\w &=-\int_{i}^{e} v d P=-C \int_{i}^{e} \frac{d P}{P^{1 / n}} \\&=-\frac{n}{n-1}\left(P_{e} v_{e}-P_{i} v_{i}\right)=-\frac{n R}{n-1}\left(T_{e}-T_{i}\right)\end{aligned}