Question 1.18: A car weighs 3000 lbm, and is travelling 60 mph when it has ...

A car weighs 3000 lbm, and is travelling 60 mph when it has to make an emergency stop. The car comes to a stop 5 seconds after the brakes are applied.

A) Assuming the rate of deceleration is constant, what force is required?
B) Assuming the rate of deceleration is constant, how much distance is covered before the car comes to a stop?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

A) Force = mass × acceleration

60 \operatorname{mph}\left(\frac{1~ \mathrm{hr}}{3600~ \mathrm{sec}}\right)\left(\frac{5280 ~\mathrm{ft}}{1 ~\mathrm{mile}}\right)=88 \frac{\mathrm{ft}}{\mathrm{sec}}

Acceleration =\frac{\text { velocity }_{\text {final }}-\text { velocity }_{\text {initial }}}{\text { time }}

\begin{aligned}& a=\frac{88 \frac{\mathrm{ft}}{\mathrm{sec}}-0}{5 \,\mathrm{sec}}\\& \mathrm{a}=17.6 \frac{\mathrm{ft}}{\mathrm{sec}^{2}}\\& \rm Force =17.6 \frac{\mathrm{ft}}{\mathrm{sec}^{2}} \times 3000~ \mathrm{lb}_{\mathrm{m}}\\& \rm Force =\bf 52500 \frac{lb_{m} f t}{\bf sec ^{2}}\end{aligned}

B) \begin{aligned}\text{Position}_{\text {final }}=\frac{\text { acceleration } * \text { time }^2}{2}+ \text{velocity} _{\text {inital }} \times \text{time} + \text{position} _{\text {intial }}\end{aligned}

\rm Position_{\mathrm{final}}=\frac{\left(-17.6 \frac{\mathrm{ft}}{\mathrm{sec}^{2}}\right)(5 \mathrm{sec})^{2}}{2}+\left(88 \frac{\mathrm{ft}}{\mathrm{sec}}\right)(5~ \mathrm{sec})+0

\rm Position _{\text {final }}=\bf 220~ \mathbf{\ ft}

Related Answered Questions