Question 7.72: The T-beam is subjected to a shear of  V = 150 kN. Determine...

The T-beam is subjected to a shear of  V = 150 kN. Determine the amount of this force that is supported by the web B.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\bar{y} =\frac{(0.02)(0.2)(0.04)+(0.14)(0.2)(0.04)}{0.2(0.04)+0.2(0.04)}=0.08  \mathrm{m}

 

I= \frac{1}{12}(0.2)\left(0.04^{3}\right)+0.2(0.04)(0.08-0.02)^{2}

 

+\frac{1}{12}(0.04)\left(0.2^{3}\right)+0.2(0.04)(0.14-0.08)^{2}=85.3333\left(10^{-6}\right)  \mathrm{m}^{4}

 

A^{\prime} =0.04(0.16-y)

 

\bar{y}^{\prime} =y+\frac{(0.16-y)}{2}=\frac{(0.16+y)}{2}

 

Q =\bar{y}^{\prime} A^{\prime}=0.02\left(0.0256-y^{2}\right)

 

\tau =\frac{V Q}{I t}=\frac{150\left(10^{3}\right)(0.02)\left(0.0256-y^{2}\right)}{85.3333\left(10^{-6}\right)(0.04)}=22.5\left(10^{6}\right)-878.9\left(10^{6}\right) y^{2}

 

V =\int \tau d A, \quad d A=0.04 d y

 

V =\int_{-0.04}^{0.16}\left(22.5\left(10^{6}\right)-878.9\left(10^{6}\right) y^{2}\right) 0.04 d y

 

=\int_{-0.04}^{0.16}\left(900\left(10^{3}\right)-35.156\left(10^{6}\right) y^{2}\right) d y

 

=131250  \mathrm{N}=131  \mathrm{kN}
2

Related Answered Questions