Question 2.20: A gas is stored in an isochoric, refrigerated tank that has ...

A gas is stored in an isochoric, refrigerated tank that has V = 5 m³ . Initially, the gas inside the tank has T = 15°C and P = 5 bar, while the ambient surroundings are at 25°C and atmospheric pressure. The refrigeration system fails, and the gas inside the tank gradually warms to 25°C.

A) Find the final pressure of the gas, assuming it is an ideal gas.
B) Find the final pressure of the gas, assuming the gas is described by the van der Waals equation of state, with a=8.0×105cm6/bar/ mol2a=8.0\times { 10 }^{ 5 }\rm{ cm }^{ 6 }/\rm bar/{\rm  mol }^{ 2 } and b = 100 cm3/mol\rm{ cm^3 }/{ \rm mol }.
C) For the cases in parts A and B, how much work was done by the gas on the surroundings?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

In this problem, we will use the Ideal Gas Constant (0.08314LbarmolK)(1 m31000 L)=8.314×105m3barmolK\left(0.08314 \frac{\mathrm{L} \,\mathrm{bar}}{\mathrm{mol} \,\mathrm{K}}\right)\left(\frac{1 \mathrm{~m}^{3}}{1000 \mathrm{~L}}\right)=8.314 \times10^{-5} \frac{\mathrm{m}^{3} \mathrm{bar}}{\mathrm{mol} \,\mathrm{K}}

A) 25C=298 K15C=288 K25^{\circ} \mathrm{C}=298 \mathrm{~K} \quad 15^{\circ} \mathrm{C}=288 \mathrm{~K}

PV=NRT\mathrm{PV}=\mathrm{NRT}

TP=VNR\frac{\mathrm{T}}{\mathrm{P}}=\frac{\mathrm{V}}{\mathrm{NR}}

With N, R and V all constant:

Tfinal Pfinal =Tinitial Pinitial Pfinal =Tfinal PinitialTinitial =(298 K)(5bar)(288 K)=5.17bar\begin{aligned}& \frac{\mathrm{T}_{\text {final }}}{\mathrm{P}_{\text {final }}}=\frac{\mathrm{T}_{\text {initial }}}{\mathrm{P}_{\text {initial }}}\\& \mathrm{P}_{\text {final }}=\frac{\mathrm{T}_{\text {final }} \mathrm{P}_{\mathrm{initial}}}{\mathrm{T}_{\text {initial }}}=\frac{(298 \mathrm{~K})(5 \mathrm{bar})}{(288 \mathrm{~K})}=\mathbf{5 . 1 7 \mathbf { b a r }}\end{aligned}

B) Find the molar volume of gas at the initial temperature and pressure, using the VDW equation:

P=RTVbaV25bar=(8.314×105m3barmolK)288 K(V)(100 cm3 mol)(m100 cm)3(8.0×106cm6barmol2)(m100 cm)6(V)2\begin{aligned}& \mathrm{P}=\frac{\mathrm{RT}}{\underline{\mathrm{V}}-\mathrm{b}}-\frac{\mathrm{a}}{\underline{\mathrm{V}}^{2}}\\& 5 \mathrm{bar}=\frac{\left(8.314 \times 10^{-5} \frac{\mathrm{m}^{3} \mathrm{bar}}{\mathrm{mol} \mathrm{K}}\right) 288 \mathrm{~K}}{(\underline{\mathrm{V}})-\left(\frac{100 \mathrm{~cm}^{3}}{\mathrm{~mol}}\right)\left(\frac{\mathrm{m}}{100 \mathrm{~cm}}\right)^{3}}-\frac{\left(8.0 \times 10^{6} \frac{\mathrm{cm}^{6} \mathrm{bar}}{\mathrm{mol}^{2}}\right)\left(\frac{\mathrm{m}}{100 \mathrm{~cm}}\right)^{6}}{(\underline{\mathrm{V}})^{2}}\end{aligned}

Solving this cubic equation for ” V ” yields three answers, only one of which is real. Therefore,

V=0.004544m3 mol\underline{V}=0.004544 \frac{\mathrm{m}^{3}}{\mathrm{~mol}}

Solving for N using known total volume:

V=NVN=5 m30.004544m3 mol=1100.mol\begin{aligned}& V=N \underline{V}\\& N=\frac{5 \mathrm{~m}^{3}}{0.004544 \frac{\mathrm{m}^{3}}{\mathrm{~mol}}}=1100 . \mathrm{mol}\end{aligned}

Since system is closed and isochoric, N, V and V are all constant. At final conditions:

P=RTVbaV2P=(8.314×105m3barmolK)298 K(5 m31100mols)(100 cm3 mol)(m100 cm)3(8.0×106cm6barmol2)(m100 cm)6(5 m31100mols)2=5.19bar\begin{aligned}& P=\frac{R T}{\underline{V}-b}-\frac{a}{\underline{V}^{2}}\\& P=\frac{\left(8.314 \times 10^{-5} \frac{\mathrm{m}^{3} \mathrm{bar}}{\mathrm{mol} \,\mathrm{K}}\right) 298 \mathrm{~K}}{\left(\frac{5 \mathrm{~m}^{3}}{1100 \mathrm{mols}}\right)-\left(\frac{100 \mathrm{~cm}^{3}}{\mathrm{~mol}}\right)\left(\frac{\mathrm{m}}{100 \mathrm{~cm}}\right)^{3}}-\frac{\left(8.0 \times 10^{6} \frac{\mathrm{cm}^{6} \mathrm{bar}}{\mathrm{mol}^{2}}\right)\left(\frac{\mathrm{m}}{100 \mathrm{~cm}}\right)^{6}}{\left(\frac{5 \mathrm{~m}^{3}}{1100 \mathrm{mols}}\right)^{2}}\\& \qquad =\bf 5.19 \,\mathbf{bar}\end{aligned}

C) No work was done on the gas by the environment. Heat was added, but there was no expansion or contraction, and therefore no WEC\mathrm{W}_{\mathrm{EC}}.

Related Answered Questions