Question 2.21: Biosphere II is an experimental structure that was designed ...

Biosphere II is an experimental structure that was designed to be an isolated ecological space, intended for conducting experiments on managed, self-contained ecosystems. Biosphere II (so named because the earth itself was regarded as the first “Biosphere”) is covered by a rigid dome. One of the engineering challenges in designing Biosphere II stemmed from temperature fluctuations of the air inside the dome. To prevent this from resulting in pressure fluctuations that could rupture the dome, flexible diaphragms called “lungs” were built into the structure. These “lungs” expanded and contracted so that changes in air volume could be accommodated while pressure was maintained constant.

For the purposes of this problem, assume that air is an ideal gas, with heat capacity equal to a weighted average of the ideal gas heat capacities of nitrogen and oxygen:C_{P \text { air }}^{*}=0.79 C_{P N 2}^{*}+0.21 C_{PO_2}^{*}{ }

In parts A and B, suppose the volume of air contained within the Biosphere II was 125,000 m³ there were no lungs, and the pressure of the air was 1 atmosphere when the temperature was 70°F.

A) What air pressure would occur at a temperature of 0°F?
B) What air pressure would occur at a temperature of 105°F?

For parts C-E assume the Biosphere II does have lungs, and that the total volume of air inside the dome is 125,000 m³ when the lungs are fully collapsed.

C) If the lungs are designed to maintain a constant pressure of 1 atm at all temperatures between 0 and 105°F, what volume of air must the lungs hold when fully expanded?
D) If the temperature inside the dome increases from 0°F to 105°F at a constant P=1 atm, what change in internal energy does the air undergo?
E) If the temperature inside the dome increases from 0°F to 105°F at a constant P=1 atm, and the lungs are sized as calculated in part C, give your best estimate of the work done by the lungs on the surroundings.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

А) 70^{\circ} \mathrm{F}=(70-32) \frac{5}{9}=21.11+273.15=294.26 \mathrm{~K}

0^{\circ} \mathrm{F}=(0-32) \frac{5}{9}=-17.78+273.15=255.37 \mathrm{~K}

PV=NRT

Consider N is constant (closed system), V is constant (given), and R is constant (always true). So:

\frac{\mathrm{T}_{\text {final }}}{\mathrm{P}_{\text {final }}}=\frac{\mathrm{T}_{\text {initial }}}{\mathrm{P}_{\text {initial }}}

\mathrm{P}_{\text {final }}=\frac{\mathrm{T}_{\text {final }} \mathrm{P}_{\text {initial }}}{\mathrm{T}_{\text {initial }}}=\frac{(255.37 \mathrm{~K})(1 \mathrm{~atm})}{(294.26 \mathrm{~K})}=\mathbf{0 . 8 6 7 8} \mathbf{~ a t m}

B) 105^{\circ} \mathrm{F}=(105-32) \frac{5}{9}=40.56+273.15=313.71 \mathrm{~K}

 P_{\text {final }}=\frac{T_{\text {final }} P_{\text {initial }}}{T_{\text {initial }}}=\frac{(313.71 \mathrm{~K})(1 \mathrm{~atm})}{(294.26 \mathrm{~K})}=\mathbf{1.0661} \mathbf{~ a t m}

C) Volume of Air in Lungs = Max Volume – Minimum Volume

Minimum Volume =125000 m³

Max Volume  =\frac{\mathrm{nRT}_{\max }}{\mathrm{P}}

n is unknown so find it from the known air volume at the minimum T :

\begin{aligned}& \mathrm{n}=\frac{\mathrm{PV}_{\text {minimum }}}{\mathrm{RT}_{\text {minimum }}}=\frac{(1 \mathrm{~atm})\left(125000 \mathrm{~m}^{3}\right)\left(\frac{1000 \mathrm{~L}}{1 \mathrm{~m}^{3}}\right)}{\left(0.08206 \frac{\mathrm{L} \,\mathrm{atm}}{\mathrm{mol}~ \mathrm{K}}\right)(255.37 \mathrm{~K})}=5968481 \mathrm{~mol} \\& \text { Max Volume }=\frac{(5968481 \mathrm{~mol})\left(0.08206 \frac{\mathrm{L} \,\mathrm{atm}}{\mathrm{mol}~ \mathrm{K}}\right)(313.71 \mathrm{~K})}{(1 \mathrm{~atm})\left(\frac{1000 \mathrm{~L}}{1 \mathrm{~m}^{3}}\right)}=153573 \mathrm{~m}^{3}\\& \text{Volume of Air in Lungs} =153573 \mathrm{~m}^{3}-125000 \mathrm{~m}^{3}=\mathbf{2 8 5 7 3 ~\mathbf { m } ^ { 3 }}\end{aligned}

D) Since this is being modeled an ideal gas, Internal Energy is dependent upon only temperature.

\begin{gathered}\mathrm{d} \widehat{U}=\mathrm{C}_{\mathrm{V}} \mathrm{dT}\\\int_{\min }^{\max } d \widehat{U}=\int_{\min }^{\max } C_{V} d T\\\mathrm{C}_{\mathrm{v}}=\mathrm{C}_{\mathrm{p}}-\mathrm{R}\\C V_{\text {air }}=\left(0.79 \mathrm{C}_{\mathrm{pN}_{2}}+0.21 \mathrm{C}_{\mathrm{pO}_{2}}\right)-\mathrm{R}\\\int_{\min }^{\max } \mathrm{d} \widehat{U}=\int_{\min }^{\max }\left(\left(0.79 \mathrm{C}_{\mathrm{PN}_{2}}+0.21 \mathrm{C}_{\mathrm{pO}_{2}}\right)-\mathrm{R}\right) \mathrm{dT}\\\int_{\min }^{\max } \mathrm{d} \widehat{\mathrm{U}}=\left(0.79 \int_{\min }^{\max } \mathrm{C}_{\mathrm{pN}_{2}} \mathrm{dT}\right)+\left(0.21 \int_{\min }^{\max } \mathrm{C}_{\mathrm{pO}_{2}} \mathrm{dT}\right)-\left(\mathrm{R} \int_{\min }^{\max } \mathrm{dT}\right) \\ \mathrm{T}_{\max }=313.71 \mathrm{~K} \\ \mathrm{~T}_{\min }=255.37 \mathrm{~K}\\\frac{C_{P}^{*}}{R}=A+B T+C T^{2}+D T^{3}+E T^{4}\end{gathered}

\rightarrow Nitrogen Integral

\begin{array}{|c|c|c|c|c|c|c|} \hline \bf{Name}& \bf{Formula} & \bf A & \bf B\times10^3 & \bf C\times10^5 & \bf D\times10^8 & \bf E\times10^{11}\\\hline \bf{Nitrogen} & \rm N_2 & 3.539 & -0.261 & 0.007 & 0.157 & -0.099 \\\hline \end{array}

\begin{gathered} \left(0.79 \int_{\min }^{\max } \mathrm{C}_{\mathrm{pN}_{2}} \mathrm{dT}\right)=0.79 \mathrm{R} \int_{255.37 \mathrm{~K}}^{313.71 \mathrm{~K}}\left(A+B T+C T^{2}+D T^{3}+E T^{4}\right) \mathrm{dT} \\ =0.79\left(8.314 \frac{\mathrm{kJ}}{\mathrm{kmol} \,\mathrm{K}}\right)\{(3.539)(313.71-255.37) \\ +\frac{1}{2}\left(-2.61 \times 10^{-4}\right)\left(313.71^{2}-255.37^{2}\right) \\ +\frac{1}{3}\left(7.00 \times 10^{-8}\right)\left(313.71^{3}-255.37^{3}\right) \\ +\frac{1}{4}\left(1.57 \times 10^{-9}\right)\left(313.71^{4}-255.37^{4}\right) \\ \left.+\frac{1}{5}\left(-9.9 \times 10^{-13}\right)\left(313.71^{5}-255.37^{5}\right)\right\} \\ \left(0.79 \int_{\min }^{\max } \mathrm{C}_{\mathrm{pN}_{2}} \mathrm{dT}\right)=1341.26 \frac{\mathrm{kJ}}{\mathrm{kmol}} \\\end{gathered}

\rightarrow \text { Oxygen Integral } \begin{array}{|c|c|c|c|c|c|c|} \hline \bf{Name}& \bf{Formula} & \bf A & \bf B\times10^3 & \bf C\times10^5 & \bf D\times10^8 & \bf E\times10^{11}\\\hline \bf{Oxygen} & \rm O_2 & 3.630 & -1.794 & 0.658 & -0.601 & 0.179\\\hline \end{array}

\begin{gathered}& \left(0.21 \int_{\min }^{\max } \mathrm{C}_{\mathrm{pO}_{2}} \mathrm{dT}\right)=0.21 \mathrm{R} \int_{255.22 \mathrm{~K}}^{313.56 \mathrm{~K}}\left(A+B T+C T^{2}+D T^{3}+E T^{4}\right) \mathrm{dT} \\& =0.21\left(8.314 \frac{\mathrm{kJ}}{\mathrm{kmol} \,\mathrm{K}}\right)\{(3.630)(313.71-255.37) \\& +\frac{1}{2}\left(-1.794 \times 10^{-3}\right)\left(313.71^{2}-255.37^{2}\right) \\& +\frac{1}{3}\left(6.58 \times 10^{-6}\right)\left(313.71^{3}-255.37^{3}\right) \\& +\frac{1}{4}\left(-6.01 \times 10^{-9}\right)\left(313.71^{4}-255.37^{4}\right) \\& \left.+\frac{1}{5}\left(-1.79 \times 10^{-12}\right)\left(313.71^{5}-255.37^{5}\right)\right\} \\& \left(0.21 \int_{\min }^{\max } \mathrm{C}_{\mathrm{pO}_{2}} \mathrm{dT}\right)=359.28 \frac{\mathrm{kJ}}{\mathrm{kmol}} \\& \left(\mathrm{R} \int_{\min }^{\max } \mathrm{dT}\right)=\left(8.314 \frac{\mathrm{kJ}}{\mathrm{kmol}}\right)(313.71-255.37)=485.04 \frac{\mathrm{kJ}}{\mathrm{kmol}} \\& \int_{\min }^{\max } \mathrm{d} \widehat{\mathrm{U}}=\left(0.79 \int_{\min }^{\max } \mathrm{C}_{\mathrm{pN}_{2}} \mathrm{dT}\right)+\left(0.21 \int_{\min }^{\max } \mathrm{C}_{\mathrm{pO}_{2}} \mathrm{dT}\right)-\left(\mathrm{R} \int_{\min }^{\max } \mathrm{dT}\right) \\& \int_{\min }^{\max } \mathrm{d} \widehat{\mathrm{U}}=1341.26 \frac{\mathrm{kJ}}{\,\mathrm{kmol}}+359.28 \frac{\mathrm{kJ}}{\mathrm{kmol}}-485.04 \frac{\mathrm{kJ}}{\mathrm{kmol}~ \mathrm{K}}=\mathbf{1 2 1 5 . 5} \frac{\mathbf{k J}}{\mathbf{k m o l}}\\& \Delta U=(5968481 \mathrm{~mol})\left(\frac{1 \,\mathrm{kmol}}{1000 \mathrm{~mol}}\right)\left(1215.5 \frac{\mathrm{kJ}}{\mathrm{kmol}}\right)=\mathbf{7 . 2 5} \times \mathbf{1 0}^6 \,\mathbf{k J}\end{gathered}

E)

\begin{gathered}& \mathrm{W}_{\mathrm{EC}}=-\int \mathrm{PdV} \\& \mathrm{W}_{\mathrm{EC}}=-\mathrm{P} \int_{0}^{28573 \mathrm{~m}^{3}} \mathrm{dV}=-(1 \mathrm{~atm})\left(28573 \mathrm{~m}^{3}\right)\left(\frac{101325 \frac{\mathrm{N}}{\mathrm{m}^{2}}}{1 \mathrm{~atm}}\right)\left(\frac{1 \mathrm{~J}}{1 \,\mathrm{Nm}}\right) \\& =\bf -2.895 \times 10^{9} ~J\end{gathered}

Related Answered Questions