Question 2.22: Estimate the change in Û when this compound melts at atmosph...

Estimate the change in \widehat{U} when this compound melts at atmospheric pressure.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For Solids (1) and Liquids (2):

\mathrm{H}=\mathrm{U}+\mathrm{PV}

\mathrm{U}=\mathrm{H}-\mathrm{PV}

\Delta \mathrm{U}=\mathrm{U}_{2}-\mathrm{U}_{1}=\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right)-\mathrm{P}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) \quad (Only valid for constant pressure)

Divide both sides by mass to get,

\Delta \widehat{\mathrm{U}}=\widehat{\mathrm{U}}_{2}-\widehat{\mathrm{U}}_{1}=\left(\widehat{\mathrm{H}}_{2}-\widehat{\mathrm{H}}_{1}\right)-\mathrm{P}\left(\widehat{\mathrm{V}}_{2}-\widehat{\mathrm{V}}_{1}\right)

Since the process is melting, \widehat{\mathrm{H}}_{2}-\widehat{\mathrm{H}}_{1} is \Delta \widehat{\mathrm{H}}^{\text {fus }}.

\Delta \widehat{\mathrm{U}}=\widehat{\mathrm{U}}_{2}-\widehat{\mathrm{U}}_{1}=\Delta \widehat{\mathrm{H}}^{\text {fus }}-\mathrm{P}\left(\widehat{\mathrm{V}}_{2, \text { liquid }}-\widehat{\mathrm{V}}_{1, \text { solid }}\right)

Plugging in given values, \widehat{\mathrm{V}}_{\text {solid } / \text { liquid }}=\frac{1}{\rho}

\Delta \widehat{\mathrm{U}}=\frac{75~ \mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}-(1 \mathrm{~atm})\left(\frac{\mathrm{ft}^{3}}{30 \,\mathrm{lb}_{\mathrm{m}}}-\frac{\mathrm{ft}^{3}}{40 \,\mathrm{lb}_{\mathrm{m}}}\right)

Converting from \frac{\operatorname{atm} \mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}} to \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}},

\begin{gathered}\Delta \widehat{\mathrm{U}}=\frac{75 \,\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}-\left(0.00833 \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}}\right)\left(\frac{\mathrm{m}}{3.28~ \mathrm{ft}}\right)^{3}\left(\frac{8.314 \frac{\mathrm{kJ}}{\mathrm{kmol}\, \mathrm{K}}}{8.314 \times 10^{-2} \frac{\mathrm{m}^{3} \mathrm{bar}}{\mathrm{kmol} \,\mathrm{K}}}\right)\left(\frac{1000 \mathrm{~J}}{\mathrm{~kJ}}\right)\left(\frac{9.48 \times 10^{-4} \mathrm{BTU}}{\mathrm{J}}\right)\\\Delta \widehat{\mathrm{U}}=\frac{75 \,\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}-\frac{0.244 \,\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}=\mathbf{7 4 . 7 6} \frac{\mathbf{B T U}}{\mathbf{l b}_{\mathbf{m}}}\end{gathered}

Notice that the PV term is small and can often be neglected when we are dealing with liquids and solids. The PV term is not small for typical gases and vapors.

Related Answered Questions