Question 2.24: When one lb-mol is heated from 25°F to 200°F at a constant p...

When one lb-mol is heated from 25°F to 200°F at a constant pressure of P=1 atm:

A) Give your best estimate of the change in enthalpy
B) Give your best estimate of the change in internal energy

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

A) This process can be broken into five steps

\begin{aligned}& \Delta \text { Enthalpy }=\left(25^{\circ} \mathrm{F} \text { to } 50^{\circ} \mathrm{F}\right)+\text { Melting }+\left(50^{\circ} \mathrm{F} \text { to } 150^{\circ} \mathrm{F}\right)+\text { Vaporizing } \\&\qquad\qquad\qquad +\left(150^{\circ} \mathrm{F} \text { to } 200^{\circ} \mathrm{F}\right) \\& \Delta \widehat{\mathrm{H}}=\int_{25^{\circ} \mathrm{F}}^{50^{\circ} \mathrm{F}} \mathrm{C}_{\mathrm{p}, \text { solid }} \mathrm{dT}+\Delta \widehat{\mathrm{H}}_{\text {fus }}+\int_{50^{\circ} \mathrm{F}}^{150^{\circ} \mathrm{F}} \mathrm{C}_{\mathrm{p}, \text { liquid }} \mathrm{dT}+\Delta \widehat{\mathrm{H}}_{\mathrm{vap}}+\int_{150^{\circ} \mathrm{F}}^{200^{\circ} \mathrm{F}} \mathrm{C}_{\mathrm{p}, \text { gas }}^{*} \mathrm{dT}\\&\Delta \widehat{\mathrm{H}}=\int_{25+459.67^{\circ} \mathrm{R}}^{50+459.67^{\circ} \mathrm{R}}\left(0.7 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathrm{R}}\right) \mathrm{dT}+\left(75 \frac{\mathrm{BTU}}{\mathrm{lb} \mathrm{m}}\right)+\int_{50+459.67^{\circ} \mathrm{R}}^{150+459.67^{\circ} \mathrm{R}}\left(0.85 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathrm{R}}\right) \mathrm{dT} \\&\qquad +\left(125 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}\right)+\int_{150+459.67^{\circ} \mathrm{R}}^{200+459.67^{\circ} \mathrm{R}}\left(1-\frac{\mathrm{T}}{1200}+\mathrm{T}^{2} \times 10^{-6}\right) \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathrm{R}} \mathrm{dT}\\&\Delta \widehat{\mathrm{H}}=17.5 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}+75 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}+85 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}+125 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}+43.7 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}=246.2 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}\\& \Delta \mathrm{H}=\Delta \widehat{\mathrm{H}} \times \mathrm{m}\\& \Delta \mathrm{H}=246.2 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \times\left(1 \,\mathrm{lbmol} \times \frac{50 \mathrm{lb}_{\mathrm{m}}}{\mathrm{lbmol}}\right)= \mathbf{12,3 0 0} \,\bf BTU\end{aligned}

B) Give your best estimate of the change in internal energy

\Delta \widehat{\mathrm{U}}=\Delta \widehat{\mathrm{H}}-\mathrm{P}\left(\widehat{\mathrm{V}}_{2, \text { vapour }}-\widehat{\mathrm{V}}_{1, \text { solid }}\right)

From Problem 2-22, \widehat{V}_{\text {solid/liquid }}=\frac{1}{\rho}

From Problem 2-23,\widehat{\mathrm{V}}_{g a s}=\frac{\underline{\mathrm{V}}}{\mathrm{mw}}=\left(\frac{\mathrm{RT}}{\mathrm{P\,mw}}\right)

\begin{aligned}& \Delta \widehat{\mathrm{U}}=\Delta \widehat{\mathrm{H}}-\mathrm{P}\left(\frac{\mathrm{RT}}{\mathrm{Pmw}}-\frac{1}{\rho}\right) \\& \Delta \widehat{\mathrm{U}}=\left(246.2 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}\right) \\& \qquad -(1 \mathrm{~atm})\left(\frac{\left(\frac{1 \mathrm{~kmol}}{2.20 \mathrm{~lbmol}}\right)\left(0.08206 \frac{\mathrm{m}^{3} \mathrm{~atm}}{\mathrm{~K} \mathrm{~kmol}}\right)(366 \mathrm{~K})}{(1 \mathrm{~atm})\left(50 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{lbmol}}\right)}\right. \\& \qquad \left.-\frac{1}{\left(40 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}\right)\left(\frac{3.28 \mathrm{ft}}{1 \mathrm{~m}}\right)^{3}}\right) \\& \Delta \widehat{\mathrm{U}}=\left(246.2 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}\right) \\& \qquad-\left(\frac{0.273 ~m^{3} a t m}{\rm l b_{m}}\right. \\& \qquad\left.-\frac{0.00071 \mathrm{~m}^{3} \mathrm{~atm}}{\mathrm{lb}_{\mathrm{m}}}\right)\left(\frac{\frac{8.314 \mathrm{~kJ}}{\mathrm{~K} \mathrm{~kmol}}}{\frac{0.08206 \mathrm{~m}^{3} \mathrm{~atm}}{\mathrm{kmol} \mathrm{~K}}}\right)\left(\frac{1000 \mathrm{~J}}{\mathrm{~kJ}}\right)\left(\frac{9.48 \times 10^{-4} \mathrm{BTU}}{\mathrm{J}}\right) \\& \Delta \widehat{\mathrm{U}}=246.2-26.2 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}\\& \Delta \mathrm{U}=\Delta \widehat{\mathrm{U}} \times \mathrm{m} \\& \Delta \mathrm{U}=220.0 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \times\left(1 \,\mathrm{lbmol} \times \frac{50~ \mathrm{lb}_{\mathrm{m}}}{\mathrm{lbmol}}\right)=\mathbf{11, 000} \,\bf { BTU }\end{aligned}

Related Answered Questions