Question 3.12: Water in a creek is at T=25°C and is flowing at 2 m/s when i...

Water in a creek is at T=25°C and is flowing at 2 m/s when it reaches the top of a waterfall. It falls 50 meters into a pool. The velocity leaving the pool is negligible. The creek, waterfall and pool can be modeled as at steady state and adiabatic.

A) What is the velocity of the water at the point that it hits the surface of the pool?
B) Assuming the heat capacity of liquid water is constant at 4.19 kJ/kg·°C, and neglecting any external heat source, what is the temperature of the water in the pool?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

A) Do an energy balance on the waterfall, “System A” in the figure.

Energy balance on System A:

\begin{aligned}\frac{\mathrm{d}}{\mathrm{dt}}\left\{\mathrm { M } \left(\widehat{\mathrm{U}}+\frac{\mathrm{v}^{2}}{2}+\mathrm{gh}\right)\right\} \\& =\dot{\mathrm{m}}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}+\frac{\mathrm{v}_{\text {in }}^{2}}{2}+\mathrm{gh}_{\mathrm{in}}\right)-\dot{\mathrm{m}}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\mathrm{out}}+\frac{\mathrm{v}_{\mathrm{out}}^{2}}{2}+g h_{\mathrm{out}}\right)+\dot{\mathrm{W}}_{\mathrm{S}}+\dot{\mathrm{W}}_{\mathrm{EC}}+\dot{\mathrm{Q}}\end{aligned}

Cancelling terms: this is a steady state process. Assume adiabatic and assume specific enthalpy is unchanged as the water falls:

\begin{aligned}& 0=\dot{\mathrm{m}}_{\mathrm{in}}\left(\frac{\mathrm{v}_{\text {in }}^{2}}{2}+g h_{\text {in }}\right)-\dot{\mathrm{m}}_{\text {out }}\left(\frac{\mathrm{v}_{\text {out }}^{2}}{2}+g h_{\text {out }}\right) \\& \frac{0}{\dot{\mathrm{m}}}=\frac{\dot{\mathrm{m}}_{\text {in }}\left(\frac{\mathrm{v}_{\text {in }}^{2}}{2}+g h_{\text {in }}\right)-\dot{\mathrm{m}}_{\text {out }}\left(\frac{\mathrm{v}_{\text {out }}^{2}}{2}+g h_{\text {out }}\right)}{\dot{\mathrm{m}}}\\& 0=\left(\frac{\mathrm{v}_{\text {in }}^{2}}{2}+g h_{\mathrm{in}}\right)-\left(\frac{\mathrm{v}_{\text {out }}^{2}}{2}+g h_{\mathrm{out}}\right)\\& \frac{\mathrm{v}_{\text {in }}^{2}}{2}=\frac{1}{2}\left(2 \frac{\mathrm{m}}{\mathrm{s}}\right)^{2}=2 \frac{\mathrm{m}^{2}}{\mathrm{sec}^{2}}\\& \mathrm{gh}_{\mathrm{in}}=\left(9.8 \frac{\mathrm{m}}{\mathrm{sec}^{2}}\right)(50 \mathrm{~m})=490 \frac{\mathrm{m}^{2}}{\mathrm{sec}^{2}}\\& \mathrm{gh}_{\mathrm{out}}=0\end{aligned}

Rearranging to solve for our velocity at Point 2

\begin{aligned}& \frac{\mathrm{v}_{\text {out }}^{2}}{2}=\frac{\mathrm{v}_{\mathrm{in}}^{2}}{2}+g h_{\mathrm{in}}-\mathrm{gh}_{\mathrm{out}}\\& \frac{\rm v_{\text {out }}^{2}}{2}=2 \frac{\mathrm{m}^{2}}{\sec ^{2}}+490 \frac{\mathrm{m}^{2}}{\mathrm{sec}^{2}}-0\\& \mathbf{v}_{\mathbf{out }}=\bf 31.37 \frac{\mathbf{m}}{\mathbf{sec}}\end{aligned}

B) Now do an energy balance on the pool, system B in the figure:

\begin{aligned}\frac{\mathrm{d}}{\mathrm{dt}}\left\{\mathrm { M } \left(\widehat{\mathrm{U}}+\frac{\mathrm{v}^{2}}{2}+\mathrm{gh}\right)\right\} \\& =\dot{\mathrm{m}}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}+\frac{\mathrm{v}_{\text {in }}^{2}}{2}+\mathrm{gh}_{\mathrm{in}}\right)-\dot{\mathrm{m}}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\mathrm{out}}+\frac{\mathrm{v}_{\mathrm{out}}^{2}}{2}+g h_{\mathrm{out}}\right)+\dot{\mathrm{W}}_{\mathrm{S}}+\dot{\mathrm{W}}_{\mathrm{EC}}+\dot{\mathrm{Q}}\end{aligned}

Cancelling terms-here again the process is steady state. Assume the water enters and leave the system at the same height, since the depth of the stream leaving the pool is unspecified:

0=\dot{\mathrm{m}}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}+\frac{\mathrm{v}_{\mathrm{in}}^{2}}{2}\right)-\dot{\mathrm{m}}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\mathrm{out}}+\frac{\mathrm{v}_{\mathrm{out}}^{2}}{2}\right)

Note:\mathrm{h}_{\text {out }} and \mathrm{h}_{\mathrm{in}} are identical, therefore, they cancel each other when \mathrm{m}_{\mathrm{in}}=\mathrm{m}_{\text {out }}.

\begin{aligned}& \frac{0}{\dot{\mathrm{m}}}=\frac{\dot{\mathrm{m}}_{\text {in }}\left(\widehat{\mathrm{H}}_{\text {in }}+\frac{\mathrm{v}_{\text {in }}^{2}}{2}\right)-\dot{\mathrm{m}}_{\text {out }}\left(\widehat{\mathrm{H}}_{\text {out }}+\frac{\mathrm{v}_{\text {out }}^{2}}{2}\right)}{\dot{\mathrm{m}}} \\& 0=\left(\widehat{\mathrm{H}}_{\text {in }}+\frac{\mathrm{v}_{\text {in }}^{2}}{2}\right)-\left(\widehat{\mathrm{H}}_{\text {out }}+\frac{\mathrm{v}_{\text {out }}^{2}}{2}\right)\\& \frac{\rm v_{\text {out }}^{2}}{2}=0 \\& \frac{\rm v_{\text {in }}^{2}}{2}=492.04 \frac{\mathrm{m}^{2}}{\mathrm{sec}^{2}}\\& \left(\widehat{\mathrm{H}}_{\mathrm{in}}\right)-\left(\widehat{\mathrm{H}}_{\mathrm{out}}\right)=\left(-492.04 \frac{\mathrm{m}^{2}}{\mathrm{sec}^{2}}\right)\left(\frac{1 \mathrm{~J}}{1 \,\mathrm{Nm}}\right)\left(\frac{1 \mathrm{~N}}{\frac{1 \,\mathrm{kgm}}{\mathrm{s}^{2}}}\right)\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right)\\& \left(\widehat{\mathrm{H}}_{\mathrm{in}}\right)-\left(\widehat{\mathrm{H}}_{\mathrm{out}}\right)=-0.49204 \frac{\mathrm{kJ}}{\mathrm{kg}}\\& C_{P}\left(T_{\text {in }}-T_{\text {out }}\right)=-0.49204 \frac{\mathrm{kJ}}{\mathrm{kg}}\\& \left(4.19 \frac{\mathrm{kJ}}{\mathrm{kg}^{\circ} \mathrm{C}}\right)\left(T_{\text {in }}-T_{\text {out }}\right)=-0.49204 \frac{\mathrm{kJ}}{\mathrm{kg}}\\& \bf T_{\text {out }}=25.12^{\circ} {C}\end{aligned}

3.21

Related Answered Questions