Question 3.13: One kilogram of liquid water is placed in a piston-cylinder ...

One kilogram of liquid water is placed in a piston-cylinder device, initially at P=1 bar and T=5°C. At these conditions, the density of water is 1000.4 g/L. The water is heated at constant pressure to T=95°C, at which point the density is 962.3 g/L. The external pressure is also P=1 bar.

A) Find the work and heat for this process. Use the temperature-dependent value of \rm C_{p} given in Appendix D. Apply the relationship H=U+PV if conversion between H and U is necessary.
B) Find the heat for this process. This time, assume the density is constant at 1000 g/L, that \rm C_{p} is constant at 4.19 J/g·K, that \rm C_{v} \sim C_{p} and that U~H for a liquid.
C) Compare your answers to A and B. The simplifying approximations in part B are often used for liquids (and solids), how well do they work here?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

A) Set up an energy balance around the water in the cylinder

\begin{aligned}\Delta\left\{M \left(\widehat{U}+\frac{\mathrm{v}^{2}}{2}+\mathrm{gh}\right)\right\} \\& =\sum_{\mathrm{j}=1}^{\mathrm{j}=\mathrm{J}}\left\{\mathrm{m}_{\mathrm{j}, \mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{j}}+\frac{\mathrm{v}_{\mathrm{j}}^{2}}{2}+\mathrm{g} \mathrm{h}_{\mathrm{j}}\right)\right\}-\sum_{\mathrm{k}=1}^{\mathrm{k}=\mathrm{K}}\left\{\mathrm{m}_{\mathrm{k}, \text { out }}\left(\widehat{\mathrm{H}}_{\mathrm{k}}+\frac{\mathrm{v}_{\mathrm{k}}^{2}}{2}+\mathrm{gh}_{\mathrm{k}}\right)\right\}+\mathrm{W}_{\mathrm{EC}} \\& +\mathrm{W}_{\mathrm{S}}+\mathrm{Q}\end{aligned}

Cancelling terms for this stationary, closed system

\begin{aligned}& \Delta\{\mathrm{M} \widehat{\mathrm{U}}\}=\mathrm{W}_{\mathrm{EC}}+\mathrm{Q} \\& \mathrm{M}\left(\widehat{\mathrm{U}}_{\text {final }}-\widehat{\mathrm{U}}_{\text {initial }}\right)=\mathrm{W}_{\mathrm{EC}}+\mathrm{Q}\end{aligned}

Solve for the change in enthalpy of the water to relate its enthalpy change to its Internal energy change

\begin{aligned}& \mathrm{T}_{\text {final }}=95^{\circ} \mathrm{C}=95+273=368 \mathrm{~K}\\& \mathrm{T}_{\text {initial }}=5^{\circ} \mathrm{C}=5+273=278 \mathrm{~K}\end{aligned}

\frac{C_{P}}{R}=A+B T+C T^{2}

\begin{array}{|c|c|c|c|c|}\hline\text{Compound }& \text{Structure }& \rm A & \rm B \times10^3 & \rm C\times10^6\\ \hline \text {Water}& \rm H_2O & 8.712 & 1.25 & -0.18 \\ \hline\end{array}

\begin{aligned}&\mathrm{d} \widehat{\mathrm{H}}=\mathrm{C}_{\mathrm{p}} \mathrm{dT}\\&\mathrm{d} \widehat{\mathrm{H}}=\left\{\mathrm{R}\left(\mathrm{A}+\mathrm{BT}+\mathrm{CT}^2\right)\right\} \mathrm{dT}\\&\int_{\text {initial }}^{\text {final }} \mathrm{d} \widehat{\mathrm{H}}=\mathrm{R} \int_{\text {initial }}^{\text {final }}\left(\mathrm{A}+\mathrm{BT}+\mathrm{CT}^2\right) \mathrm{dT}\\& \left(\widehat{\mathrm{H}}_{\text {final }}-\widehat{\mathrm{H}}_{\text {initial }}\right) \\& \qquad\qquad=\mathrm{R}\left\{\mathrm{A}\left(\mathrm{T}_{\text {final }}-\mathrm{T}_{\text {initial }}\right)+\frac{1}{2} \mathrm{~B}\left(\mathrm{~T}_{\text {final }}-\mathrm{T}_{\text {initial }}\right)^2+\frac{1}{3} \mathrm{C}\left(\mathrm{T}_{\text {final }}-\mathrm{T}_{\text {initial }}\right)^3\right\}\\&\left(\widehat{\mathrm{H}}_{\text {final }}-\widehat{\mathrm{H}}_{\text {initial }}\right) \\& \qquad\qquad =\left(8.314 \frac{\mathrm{kJ}}{\mathrm{kmol}~ \mathrm{K}}\right)\left(\frac{\mathrm{kmol}}{18.01 \mathrm{~kg}}\right)\{(8.712)(368-278) \\& \qquad\qquad\left.+\frac{1}{2}\left(1.25 \times 10^{-3}\right)\left(368^{2}-278^{2}\right)+\frac{1}{3}\left(-1.8 \times 10^{-7}\right)\left(368^{3}-278^{3}\right)\right\} \\&\qquad\qquad =378.34 \frac{\mathrm{kJ}}{\mathrm{kg}}\end{aligned}

Convert Enthalpy to Internal Energy

\begin{aligned}&\mathrm{H}=\mathrm{U}+\mathrm{PV}\\&\mathrm{d} \widehat{\mathrm{H}}=\mathrm{d} \widehat{\mathrm{U}}+\mathrm{Pd} \widehat{\mathrm{V}}\\&\left(\widehat{\mathrm{H}}_{\text {final }}-\widehat{\mathrm{H}}_{\text {initial }}\right)=\left(\widehat{\mathrm{U}}_{\text {final }}-\widehat{\mathrm{U}}_{\text {initial }}\right)+\mathrm{P}\left(\widehat{\mathrm{V}}_{\text {final }}-\widehat{\mathrm{V}}_{\text {initial }}\right)\end{aligned}

Find the specific volume initially and finally (specific volume is the inverse of density)

\begin{aligned}& \widehat{V}_{\text {final }}=\frac{1}{\rho_{\text {final }}}=\frac{1}{962.3 \frac{\mathrm{g}}{\mathrm{L}}}=0.00103917 \frac{\mathrm{L}}{\mathrm{g}}\left(\frac{1000 \mathrm{~g}}{\mathrm{~kg}}\right)=1.03917 \frac{\mathrm{L}}{\mathrm{kg}} \\\\& \widehat{V}_{\text {initial }}=\frac{1}{\rho_{\text {initial }}}=\frac{1}{1000.4 \frac{\mathrm{g}}{\mathrm{L}}}=0.00099960 \frac{\mathrm{L}}{\mathrm{g}}\left(\frac{1000 \mathrm{~g}}{\mathrm{~kg}}\right)=0.99960 \frac{\mathrm{L}}{\mathrm{kg}}\end{aligned}

Using the volumes found to solve for the change in internal energy

\begin{aligned}&378.34 \frac{\mathrm{kJ}}{\mathrm{kg}}=\left(\widehat{\mathrm{U}}_{\text {final }}-\widehat{\mathrm{U}}_{\text {initial }}\right)+(1 \mathrm{bar})\left(1.03917 \frac{\mathrm{L}}{\mathrm{kg}}-0.99960 \frac{\mathrm{L}}{\mathrm{kg}}\right) \\&\left(\widehat{\mathrm{U}}_{\text {final }}-\widehat{\mathrm{U}}_{\text {initial }}\right) \\& \qquad\qquad =378.34 \frac{\mathrm{kJ}}{\mathrm{kg}} \\& \qquad\qquad -\left(0.03957 \frac{\mathrm{L~bar}}{\mathrm{kg}}\right)\left\{\left(\frac{10^{5} \mathrm{~Pa}}{1~ \mathrm{bar}}\right)\left(\frac{1 \mathrm{~J}}{1 \mathrm{~Pa} \mathrm{~m}^{3}}\right)\left(\frac{1 \mathrm{~m}^{3}}{1000 \mathrm{~L}}\right)\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right)\right\} \\&\left(\widehat{\mathrm{U}}_{\text {final }}-\widehat{\mathrm{U}}_{\text {initial }}\right)=378.34 \frac{\mathrm{kJ}}{\mathrm{kg}}-0.003957 \frac{\mathrm{kJ}}{\mathrm{kg}}=378.336 \frac{\mathrm{kJ}}{\mathrm{kg}}\end{aligned}

Now that we have the change in internal energy, we may also find the \mathrm{W}_{\mathrm{EC}} term of the energy balance

\begin{aligned}& \mathrm{W}_{\mathrm{EC}}=-\mathrm{PdV}\\& \mathrm{W}_{\mathrm{EC}}=-\mathrm{P}\left(\mathrm{V}_{\text {final }}-\mathrm{V}_{\text {initial }}\right)\\& \mathrm{V}_{\text {final }}=\widehat{\mathrm{V}}_{\text {final }} \times\rm Mass =\left(1.03917 \frac{\mathrm{L}}{\mathrm{kg}}\right)(1 \mathrm{~kg})=1.03917 \mathrm{~L}\\& \mathrm{V}_{\text {initial }}=\widehat{\mathrm{V}}_{\text {initial }} \times\rm Mass =\left(0.99960 \frac{\mathrm{L}}{\mathrm{kg}}\right)(1 \mathrm{~kg})=0.99960 \mathrm{~L}\\& \mathrm{W}_{\mathrm{EC}}=-1 \operatorname{bar}(1.03917 \mathrm{~L}-0.99960 \mathrm{~L})\left\{\left(\frac{10^5 \mathrm{~Pa}}{1 \,\mathrm{bar}}\right)\left(\frac{1 \mathrm{~J}}{1 \mathrm{~Pa} \mathrm{~m}^3}\right)\left(\frac{1 \mathrm{~m}^3}{1000 \mathrm{~L}}\right)\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right)\right\} \\&\qquad\qquad=-\mathbf{0 . 0 0 3 9 5 7 \mathbf { k J }}\end{aligned}

Returning to the energy balance

\begin{aligned}& M\left(\widehat{U}_{\text {final }}-\widehat{U}_{\text {initial }}\right)=W_{E C}+Q\\& 1 \mathrm{~kg}\left(378.336 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)=-0.003957 \mathrm{~kJ}+\mathrm{Q}\\& \mathrm{Q}=\bf 378.34 ~kJ\end{aligned}

B) Set up an energy balance around the water in the cylinder

\begin{aligned}\Delta\left\{M \left(\widehat{U}+\frac{\mathrm{v}^{2}}{2} +\mathrm{gh}\right)\right\} \\& =\sum_{\mathrm{j}=\mathrm{J}}^{\mathrm{j}=\mathrm{J}}\left\{\mathrm{m}_{\mathrm{j}, \mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{j}}+\frac{\mathrm{v}_{\mathrm{j}}^{2}}{2}+g \mathrm{~h}_{\mathrm{j}}\right)\right\}-\sum_{\mathrm{k}=1}^{\mathrm{k}=\mathrm{K}}\left\{\mathrm{m}_{\mathrm{k}, \text { out }}\left(\widehat{\mathrm{H}}_{\mathrm{k}}+\frac{\mathrm{v}_{\mathrm{k}}^{2}}{2}+\mathrm{gh}_{\mathrm{k}}\right)\right\}+\mathrm{W}_{\mathrm{EC}} \\& +\mathrm{W}_{\mathrm{S}}+\mathrm{Q}\end{aligned}

Cancelling terms

\begin{aligned}& \Delta\{\mathrm{M} \widehat{\mathrm{U}}\}=\mathrm{W}_{\mathrm{EC}}+\mathrm{Q}\\& M\left(\widehat{U}_{\text {final }}-\widehat{U}_{\text {initial }}\right)=W_{E C}+Q\end{aligned}

Solve for the change in enthalpy of the water to relate its enthalpy change to its Internal energy change

\begin{aligned}& \mathrm{T}_{\text {final }}=95^{\circ} \mathrm{C}=95+273=368 \mathrm{~K}\\& \mathrm{T}_{\text {initial }}=5^{\circ} \mathrm{C}=5+273=278 \mathrm{~K}\\\\& d \widehat{H}=C_{p} d T\\& \left(\widehat{H}_{\text {final }}-\widehat{H}_{\text {initial }}\right)=\mathrm{C}_{\mathrm{p}}\left(\mathrm{T}_{\text {final }}-\mathrm{T}_{\text {initial }}\right)\\& \left(\widehat{\mathrm{H}}_{\text {final }}-\widehat{\mathrm{H}}_{\text {initial }}\right)=4.19 \frac{\mathrm{J}}{\mathrm{g} \mathrm{K}}(368-278)\\& \left(\widehat{\mathrm{H}}_{\text {final }}-\widehat{\mathrm{H}}_{\text {initial }}\right)=377.1 \frac{\mathrm{kJ}}{\mathrm{kg}}\end{aligned}

Since we are assuming \widehat{H} \approx \widehat{U},

\widehat{U}_{\text {final }}-\widehat{U}_{\text {initial }} \approx 377.1 \frac{\mathrm{kJ}}{\mathrm{kg}}

Now that we have the change in internal energy, we may apply find the \mathrm{W}_{\mathrm{EC}} term of the energy balance

\begin{aligned}& \mathrm{W}_{\mathrm{EC}}=-\mathrm{PdV}\\& \mathrm{W}_{\mathrm{EC}}=-\mathrm{P}\left(\mathrm{V}_{\text {final }}-\mathrm{V}_{\text {initial }}\right)\\& \mathrm{V}_{\text {final }}=\widehat{\mathrm{V}}_{\text {final }} \times \operatorname{Mass}=\left(1000 \frac{\mathrm{L}}{\mathrm{kg}}\right)(1 \mathrm{~kg})=0.001 \mathrm{~L}\\& \mathrm{V}_{\text {initial }}=\widehat{\mathrm{V}}_{\text {initial }} \times\rm Mass =\left(1000 \frac{\mathrm{L}}{\mathrm{kg}}\right)(1 \mathrm{~kg})=0.001 \mathrm{~L}\\& \mathrm{W}_{\mathrm{EC}}=-1 \operatorname{bar}(0.001 \mathrm{~L}-0.001 \mathrm{~L})=0\end{aligned}

Returning to the energy balance

\begin{aligned}& M\left(\widehat{U}_{\text {final }}-\widehat{U}_{\text {initial }}\right)=W_{E C}+Q \\& 1 \mathrm{~kg}\left(377.1 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)=0+\mathrm{Q}\\& \mathrm{Q}=\bf377.1 \,\mathbf{k J}\end{aligned}

C) The answers between part A) and B) are very close. These approximations seem to be legitimate and practical.

Related Answered Questions