Question 3.14: One kilogram of steam is placed in a piston-cylinder device,...

One kilogram of steam is placed in a piston-cylinder device, initially at P=1 bar and T=100°C. The steam is heated at constant pressure to T=200°C.

A) Find the heat and work for this process. Obtain all needed data from the steam tables.
B) Find the heat and work for this process. Use the ideal gas law and the ideal gas heat capacity for steam, located in Appendix D. How far off are your answers compared to part A?
C) Suppose in part A you had overlooked the fact that the steam expands when heated, and assumed that work was negligible. How far off would your answers for Q have been?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

A) Set up an energy balance around the steam in the cylinder

\begin{aligned}\Delta\left\{M \left(\widehat{U}+\frac{\mathrm{v}^{2}}{2} +\mathrm{gh}\right)\right\} \\& =\sum_{\mathrm{j}=1}^{\mathrm{j}=\mathrm{J}}\left\{\mathrm{m}_{\mathrm{j}, \mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{j}}+\frac{\mathrm{v}_{\mathrm{j}}^{2}}{2}+\mathrm{gh}_{\mathrm{j}}\right)\right\}-\sum_{\mathrm{k}=1}^{\mathrm{k}=\mathrm{K}}\left\{\mathrm{m}_{\mathrm{k}, \text { out }}\left(\widehat{\mathrm{H}}_{\mathrm{k}}+\frac{\mathrm{v}_{\mathrm{k}}^{2}}{2}+\mathrm{gh}_{\mathrm{k}}\right)\right\}+\mathrm{W}_{\mathrm{EC}} +\mathrm{W}_{\mathrm{S}}+\mathrm{Q}\end{aligned}

Cancelling terms

\begin{aligned}& \Delta\{\mathrm{M} \widehat{U}\}=\mathrm{W}_{\mathrm{EC}}+\mathrm{Q} \\& \mathrm{M}\left(\widehat{\mathrm{U}}_{\text {final }}-\widehat{\mathrm{U}}_{\text {initial }}\right)=\mathrm{W}_{\mathrm{EC}}+\mathrm{Q}\end{aligned}

From the steam tables,

Steam at 1 bar and 100°C \rightarrow 2506.18 \frac{\mathrm{kJ}}{\mathrm{kg}}=\widehat{\mathrm{U}}_{\text {initial }}

Steam at 1 bar and 200°C \rightarrow 2658.21 \frac{\mathrm{kJ}}{\mathrm{kg}}=\widehat{\mathrm{U}}_{\text {final }}

\left(\widehat{U}_{\text {final }}-\widehat{U}_{\text {initial }}\right)=152.03 \frac{\mathrm{kJ}}{\mathrm{kg}}

Now that we have the change in internal energy, we may find the \mathrm{W}_{\mathrm{EC}} term of the energy balance

\begin{aligned}&\mathrm{W}_{\mathrm{EC}}=-\mathrm{PdV}\\&\mathrm{W}_{\mathrm{EC}}=-\mathrm{P}\left(\mathrm{V}_{\text {final }}-\mathrm{V}_{\text {initial }}\right)\end{aligned}

Steam at 1 bar and 100^{\circ} \mathrm{C} \rightarrow 1.6959 \frac{\mathrm{m}^{3}}{\mathrm{~kg}}=\widehat{\mathrm{V}}_{\text {initial }}

Steam at 1 bar and 200^{\circ} \mathrm{C} \rightarrow 2.1724 \frac{\mathrm{m}^{3}}{\mathrm{~kg}}=\widehat{\mathrm{V}}_{\text {final }}

\begin{aligned}&\mathrm{V}_{\text {final }}=\widehat{\mathrm{V}}_{\text {final }} \times\rm Mass =\left(2.1724 \frac{\mathrm{m}^{3}}{\mathrm{~kg}}\right)(1 \mathrm{~kg})=2.1724 \mathrm{~m}^{3}\\&V_{\text {initial }}=\widehat{V}_{\text {initial }} \times\rm Mass =\left(1.6959 \frac{\mathrm{m}^{3}}{\mathrm{~kg}}\right)(1 \mathrm{~kg})=1.6959 \mathrm{~m}^{3}\end{aligned}

The gas is expanding, and P is the pressure opposing the motion, which is not given explicitly. But if the pressure within the container started at 1 bar and remained constant throughout the process, then it is reasonable to assume that the pressure opposing the expansion is also equal to 1 bar.

\begin{gathered}\mathrm{W}_{\mathrm{EC}}=-1 \operatorname{bar}\left(2.1724 \mathrm{~m}^{3}-1.6959 \mathrm{~m}^{3}\right)\left\{\left(\frac{10^{5} \mathrm{~Pa}}{1 \mathrm{~bar}}\right)\left(\frac{1 \mathrm{~J}}{1 \mathrm{~Pa\,m}^{3}}\right)\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right)\right\} \\=\bf -47.65 ~kJ\end{gathered}

Returning to the energy balance

\begin{gathered}M\left(\widehat{U}_{\text {final }}-\widehat{U}_{\text {initial }}\right)=W_{E C}+Q\\1 \mathrm{~kg}\left(152.03 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)=-47.65 \mathrm{~kJ}+\mathrm{Q}\\Q=\bf 199.7 \,kJ\end{gathered}

B) Set up an energy balance around the steam in the cylinder

\begin{aligned}\Delta\left\{\mathrm { M } \left(\widehat{\mathrm{U}}+\frac{\mathrm{v}^{2}}{2} +\mathrm{gh}\right)\right\} \\& =\sum^{\mathrm{j}=\mathrm{J}}_{j=1}\left\{\mathrm{m}_{\mathrm{j}, \mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{j}}+\frac{\mathrm{v}_{\mathrm{j}}^{2}}{2}+\mathrm{gh}_{\mathrm{j}}\right)\right\}-\sum_{\mathrm{k}=1}^{\mathrm{k}=\mathrm{K}}\left\{\mathrm{m}_{\mathrm{k}, \text { out }}\left(\widehat{\mathrm{H}}_{\mathrm{k}}+\frac{\mathrm{v}_{\mathrm{k}}^{2}}{2}+\mathrm{gh}_{\mathrm{k}}\right)\right\}+\mathrm{W}_{\mathrm{EC}} +\mathrm{W}_{\mathrm{S}}+\mathrm{Q}\end{aligned}

Cancelling terms

\begin{aligned}& \Delta\{\mathrm{M} \widehat{\mathrm{U}}\}=\mathrm{W}_{\mathrm{EC}}+\mathrm{Q} \\& \mathrm{M}\left(\widehat{\mathrm{U}}_{\text {final }}-\widehat{\mathrm{U}}_{\text {initial }}\right)=\mathrm{W}_{\mathrm{EC}}+\mathrm{Q}\end{aligned}

Find \mathrm{W}_{\mathrm{EC}}

\mathrm{W}_{\mathrm{EC}}=-\mathrm{PdV}

Solve for initial and final volume using the ideal gas law

\begin{aligned}& V=\frac{n R T}{P}=\frac{\mathrm{mRT}}{(\mathrm{MW}) \mathrm{P}}\\& \mathrm{V}_{\text {initial }}=\frac{(1 \mathrm{~kg})\left(8.314 \times 10^{-5} \frac{\mathrm{m}^{3} \mathrm{bar}}{\mathrm{mol} \,\mathrm{K}}\right)\left(\frac{1000 \mathrm{~mol}}{\mathrm{kmol}}\right)(373 \mathrm{~K})}{\left(18 \frac{\mathrm{kg}}{\mathrm{kmol}}\right) 1 \mathrm{bar}}=1.72 \mathrm{~m}^{3}\\& \mathrm{V}_{\text {final }}=\frac{(1 \mathrm{~kg})\left(8.314 \times 10^{-5} \frac{\mathrm{m}^{3} \mathrm{bar}}{\mathrm{mol} \,\mathrm{K}}\right)\left(\frac{1000 \mathrm{~mol}}{\mathrm{kmol}}\right)(473 \mathrm{~K})}{\left(18 \frac{\mathrm{kg}}{\mathrm{kmol}}\right) 1 \mathrm{bar}}=2.18 \mathrm{~m}^{3}\end{aligned}

Return to our \mathrm{W}_{\mathrm{EC}} equation

\mathrm{W}_{\mathrm{EC}}=-\int_{\mathrm{V}_{\text {initial }}}^{\mathrm{V}_{\text {final }}} \mathrm{PdV}

Since this is constant pressure, we may remove P from the integral

\begin{aligned}& W_{\mathrm{EC}}=-P \int_{\mathrm{V}_{\text {initial }}}^{\mathrm{V}_{\text {final }}} \mathrm{dV}=-P\left(\mathrm{~V}_{\text {final }}-\mathrm{V}_{\text {initial }}\right) \\& \mathrm{W}_{\mathrm{EC}}=-\mathbf{4 6} \mathbf{k J}\end{aligned}

Now find \widehat{U}_{\text {final }}-\widehat{U}_{\text {initial }}

\begin{aligned}&\mathrm{d} \widehat{\mathrm{U}}=\mathrm{C}_{\mathrm{v}} \mathrm{dt}\\&\widehat{U}_{\text {final }}-\widehat{U}_{\text {initial }}=\int_{\text {initial }}^{\text {final }} \mathrm{C}_{\mathrm{v}} d t\\&\mathrm{C}_{\mathrm{v}}=\mathrm{C}_{\mathrm{p}}-\mathrm{R}\\& \widehat{U}_{\text {final }}-\widehat{U}_{\text {initial }}=\int_{\text {initial }}^{\text {final }}\left(\mathrm{C}_{\mathrm{p}}-\mathrm{R}\right) \mathrm{dt}\end{aligned}

From Appendix D

\frac{C_{\mathrm{P}}^{*}}{\mathrm{R}}=\mathrm{A}+\mathrm{BT}+\mathrm{CT}^{2}+\mathrm{DT}^{3}+\mathrm{ET}^{4}

\begin{array}{|c|c|c|c|c|c|c|c|} \hline \bf{Name} & \bf{Formula} & \bf A & \bf B\times10^3 & \bf C\times10^5 & \bf D\times10^8 & \bf E\times10^{11} & \bf {T \, range (K)}\\ \hline \text {Water} & \rm H_2O & 4.395 & -4.186 & 1.405 & -1.564 & 0.632 & 50-100\\\hline\end{array}

\begin{aligned}& \widehat{U}_{\text {final }}-\widehat{\mathrm{U}}_{\text {initial }}=\int_{\text {initial }}^{\text {final }}\left(\mathrm{R}\left(\mathrm{A}+\mathrm{BT}+\mathrm{CT}^{2}+\mathrm{DT}^{3}+\mathrm{ET}^{4}\right)-\mathrm{R}\right) \mathrm{dT} \\& \widehat{\mathrm{U}}_{\text {final }}-\widehat{\mathrm{U}}_{\text {initial }}=\int_{\text {initial }}^{\text {final }}\left(\mathrm{RA}+\mathrm{RBT}+\mathrm{RCT}^{2}+\mathrm{RDT}^{3}+\mathrm{RET}^{4}-\mathrm{R}\right) \mathrm{dT} \\& \widehat{\mathrm{U}}_{\text {final }}-\widehat{\mathrm{U}}_{\text {initial }}=\mathrm{RAT}+\frac{1}{2} \mathrm{RBT}^{2}+\frac{1}{3} \mathrm{RCT}^{3}+\frac{1}{4} \mathrm{RDT}^{4}+\frac{1}{5} \mathrm{RET}^{5}-\mathrm{RT} \\& \widehat{\mathrm{U}}_{\text {final }}-\widehat{\mathrm{U}}_{\text {initial }} \\&\qquad\qquad =8.314 \frac{\mathrm{J}}{\mathrm{mol} \,\mathrm{K}}\left\{4.395(473-373)-\frac{1}{2}\left(4.186 \times 10^{-3}\right)\left(473^{2}-373^{2}\right)\right. \\&\qquad\qquad+\left(\frac{1}{3}\right)\left(1.405 \times 10^{-5}\right)\left(473^{3}-373^{3}\right) \\&\qquad\qquad-\left(\frac{1}{4}\right)\left(1.564 \times 10^{-8}\right)\left(473^{4}-373^{4}\right) \\&\qquad\qquad\left.+\left(\frac{1}{5}\right)\left(6.32 \times 10^{-12}\right)\left(473^{5}-373^{5}\right)-(473-373)\right\} \\& \widehat{\mathrm{U}}_{\text {final }}-\widehat{\mathrm{U}}_{\text {initial }} \\&\qquad\qquad =\int_{\text {initial }}^{\text {final }}\left\{\mathrm { R } \left(4.395-\left(4.186 \times 10^{-3}\right) \mathrm{T}+\left(1.405 \times 10^{-5}\right) \mathrm{T}^{2}\right.\right. \\&\qquad\qquad \left.\left.-\left(1.564 \times 10^{-8}\right) \mathrm{T}^{3}+\left(6.32 \times 10^{-12}\right) \mathrm{T}^{4}\right)-\mathrm{R}\right\} \mathrm{dt}\end{aligned}

\begin{aligned}\widehat{U}_{\text {final }}-\widehat{U}_{\text {initial }} & \\& =\mathrm{R} \int_{\text {initial }}^{\text {final }}\left\{4.395-\left(4.186 \times 10^{-3}\right) \mathrm{T}+\left(1.405 \times 10^{-5}\right) \mathrm{T}^{2}\right. \\& \left.-\left(1.564 \times 10^{-8}\right) \mathrm{T}^{3}+\left(6.32 \times 10^{-12}\right) \mathrm{T}^{4}-\mathrm{R}\right\} \mathrm{dt} \\\widehat{\mathrm{U}}_{\text {final }}-\widehat{\mathrm{U}}_{\text {initial }} & \\& =\mathrm{R}\left\{(4.395)(473-373)-\left(\frac{1}{2}\right)\left(4.186 \times 10^{-3}\right)\left(473^{2}-373^{2}\right)\right. \\& +\left(\frac{1}{3}\right)\left(1.405 \times 10^{-5}\right)\left(473^{3}-373^{3}\right) \\& -\left(\frac{1}{4}\right)\left(1.564 \times 10^{-8}\right)\left(473^{4}-373^{4}\right) \\& \left.+\left(\frac{1}{5}\right)\left(6.32 \times 10^{-12}\right)\left(473^{5}-373^{5}\right)-\mathrm{R}\right\}=146.04 \frac{\mathrm{kJ}}{\mathrm{kg}}\end{aligned}

Returning to the energy balance

\begin{aligned}& M\left(\widehat{U}_{\text {final }}-\widehat{U}_{\text {initial }}\right)=\mathrm{W}_{\mathrm{EC}}+\mathrm{Q} \\& 1 \mathrm{~kg}\left(146.04 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)=-46 \mathrm{~kJ}+\mathrm{Q} \\& \bf Q=192.04 ~kJ\end{aligned}

Our answers for part B) compared to part A) were correct within <5 %.

C) If we had not accounted for expansion work, we would have said Q = ∆U and our answer for Q would have been about 25% off. That would not have been a good approximation.

Related Answered Questions