Question 3.17: A lake initially contains 20,000 kg of water, and has a unif...

A lake initially contains 20,000 kg of water, and has a uniform temperature of 20°C. The ambient pressure is P = 1 bar. During the course of a day, the following events affecting the lake occur:

• 200 kg of rain falls into the lake. The rainwater has a temperature of 25°C.
• Some water evaporates from the lake.
• Heat is both added to (sunlight) and removed from (convection into the cooler air) the lake.

If you need the heat capacity of LIQUID water use the approximation C_{\nu} \sim C_{p}~4.184 J/g·°C.

A) Find a reasonable estimate of the velocity of a raindrop and determine the kinetic energy of the rain when it strikes the lake. Is the kinetic energy significant compared to the enthalpy?
B) The surface of the lake is at T=20°C and P=1 bar. The enthalpy of water vapor at T = 20°C and P = 1 bar is not in the steam tables. You could model the evaporating water as saturated vapor at T=20°C or saturated vapor at P=1 bar. Which is a better estimate?
C) If 200 kg of water evaporated, and at the end of the day, the temperature of the lake is again a uniform 20°C, calculate the NET amount of heat that was added to or removed from the lake.
D) Calculate the NET heat if the final temperature was a uniform 21°C and the amount of water evaporating was 200 kg.
E) Calculate the NET heat if the final temperature was a uniform 21°C and the amount of water evaporating was 50 kg.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

A) The terminal velocity of a raindrop is dependent upon the size of the raindrop, but most sources list \sim 10 \frac{\mathrm{m}}{\mathrm{sec}} as a typical value.

Find Kinetic Energy of rainwater

\begin{aligned}& \mathrm{K} . \mathrm{E}=\operatorname{mass} \times \frac{\text { velocity }^{2}}{2}\\& \mathrm{K} . \mathrm{E}=(200 \mathrm{~kg})\left(\frac{1}{2}\right)\left(10 \frac{\mathrm{m}}{\mathrm{sec}}\right)^{2}\left(\frac{\mathrm{J}~ \mathrm{\textrm {sec } ^ { 2 }}}{\mathrm{kg}~ \mathrm{m}^{2}}\right)=10000 \mathrm{~J}=\bf 10 \,\mathbf{k J}\end{aligned}

Comparing kinetic energy to enthalpy directly is complicated by the fact that the kinetic energy is calculated on an absolute basis while enthalpy is known only relative to some reference state. However, if we assume the rain is saturated liquid at 25°C, and use the steam table values, the enthalpy is 104.8 kJ/kg. By contrast the kinetic energy of the rain is, per kilogram, is 0.05 (10 kJ/200 kg); by comparison it is negligible.

B) The better estimate is saturated water vapor at 20°C because the enthalpy of an ideal gas is a function of temperature but not of pressure. At atmospheric pressure and below we expect the ideal gas model to well approximate the properties of water vapor. Consequently, we will use the data at the correct temperature of 20°C, and assume the effect of pressure is negligible.

C) Set up an energy balance around the lake. We will use the assumption stated in part B) and the assumption that the velocity of the rainwater is negligible.

\begin{aligned}\Delta\left\{\mathrm { M } \left(\widehat{\mathrm{U}}+\frac{\mathrm{v}^{2}}{2} +\mathrm{gh}\right)\right\} \\& =\mathrm{m}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}+\frac{\mathrm{v}_{\text {in }}^{2}}{2}+\mathrm{gh}_{\mathrm{in}}\right)-\mathrm{m}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\mathrm{out}}+\frac{\mathrm{v}_{\mathrm{out}}^{2}}{2}+\mathrm{gh}_{\mathrm{out}}\right)+\mathrm{W}_{\mathrm{EC}}+\mathrm{W}_{\mathrm{S}}+\mathrm{Q}\end{aligned}

The left hand side is 0 because the final state of the lake is identical to the initial state of the lake- same temperature and mass of water. Cancelling terms:

0=m_{\rm {rain }} \widehat{H}_{25^{\circ} \mathrm{C}, 1 \text { bar }}-m_{\rm v a p} \widehat{H}_{20^{\circ} \mathrm{C}, 1 \text { bar }}+\mathrm{Q}_{\text {net }}

Liquid water at 25°C and 1 bar ≈ Saturated liquid water at 25^{\circ} \mathrm{C} \rightarrow 104.8 \frac{\mathrm{kJ}}{\mathrm{kg}}

Water vapor at 20°C and 1 bar ≈ Saturated water vapor at 20^{\circ} \mathrm{C} \rightarrow 2537.4 \frac{\mathrm{kJ}}{\mathrm{kg}}

\begin{aligned}& 0=(200 \mathrm{~kg})\left(104.8 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)-(200 \mathrm{~kg})\left(2537.4 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)+\mathrm{Q}_{\mathrm{net}}\\& Q_{\rm n e t}=\bf 486,520 \mathbf{~kJ}\end{aligned}

D) Set up an energy balance around the lake, using the same assumptions as in part (B).

\begin{aligned}\Delta\left\{\mathrm { M } \left(\widehat{\mathrm{U}}+\frac{\mathrm{v}^{2}}{2}+\mathrm{gh}\right)\right\} \\& =\mathrm{m}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}+\frac{\mathrm{v}_{\text {in }}^{2}}{2}+\mathrm{gh}_{\mathrm{in}}\right)-\mathrm{m}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\mathrm{out}}+\frac{\mathrm{v}_{\mathrm{out}}^{2}}{2}+\mathrm{gh}_{\mathrm{out}}\right)+\mathrm{W}_{\mathrm{EC}}+\mathrm{W}_{\mathrm{S}}+\mathrm{Q}\end{aligned}

Cancelling terms

M_{\text {lake }}\left(\widehat{U}_{\text {final }}-\widehat{U}_{\text {initial }}\right)=m_{\text {rain }} \widehat{H}_{25^{\circ} \mathrm{C}, 1 \text { bar }}-m_{\text {vap }} \widehat{H}_{21^{\circ} \mathrm{C}, 1 \text { bar }}+\mathrm{Q}_{\text {net }}

Enthalpies

Liquid water at 25°C and 1 bar ≈ Saturated liquid water at 25^{\circ} \mathrm{C} \rightarrow 104.8 \frac{\mathrm{kJ}}{\mathrm{kg}}

Water vapor at 20°C and 1 bar ≈ Saturated water vapor at 20^{\circ} \mathrm{C} \rightarrow 2537.4 \frac{\mathrm{kJ}}{\mathrm{kg}}

\begin{aligned}& \mathrm{M}_{\text {lake }}\left(\widehat{\mathrm{U}}_{\text {final }}-\widehat{\mathrm{U}}_{\text {initial }}\right)=\mathrm{M}_{\text {lake }} \mathrm{C}_{\mathrm{p}} \Delta \mathrm{T}=20000 \mathrm{~kg}\left(4.184 \frac{\mathrm{J}}{\mathrm{kg}^{\circ} \mathrm{C}}\right)\left(21^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right) \\& \mathrm{M}_{\text {lake }} \mathrm{C}_{\mathrm{p}} \Delta \mathrm{T}=\mathrm{m}_{\text {rain }} \widehat{\mathrm{H}}_{25^{\circ} \mathrm{C}, 1 \text { bar }}-\mathrm{m}_{\text {vap }} \widehat{\mathrm{H}}_{21^{\circ} \mathrm{C}, 1 \text { bar }}+\mathrm{Q}_{\text {net }} \\& 20000 \mathrm{~kg}\left(4.184 \frac{\mathrm{J}}{\mathrm{kg}^{\circ} \mathrm{C}}\right)\left(21^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right) \\& =(200 \mathrm{~kg})\left(104.8 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)-(200 \mathrm{~kg})\left(2537.4 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)+\mathrm{Q}_{\mathrm{net}}\\ & \rm Q_{n e t}=\bf 570,200 \mathbf{~kJ}\end{aligned}

E) Set up an energy balance around the lake. We will use the assumption from part B) and the assumption that the velocity of the rainwater is negligible.

\begin{aligned}\Delta\left\{\mathrm { M } \left(\widehat{\mathrm{U}}+\frac{\mathrm{v}^{2}}{2}+\mathrm{gh}\right)\right\} \\& =\mathrm{m}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}+\frac{\mathrm{v}_{\text {in }}^{2}}{2}+\mathrm{gh}_{\mathrm{in}}\right)-\mathrm{m}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\mathrm{out}}+\frac{\mathrm{v}_{\mathrm{out}}^{2}}{2}+\mathrm{gh}_{\mathrm{out}}\right)+\mathrm{W}_{\mathrm{EC}}+\mathrm{W}_{\mathrm{S}}+\mathrm{Q}\end{aligned}

Cancelling terms

\mathrm{M}_{\text {final }} \widehat{U}_{\text {final }}-\mathrm{M}_{\text {initial }} \widehat{U}_{\text {initial }}=\mathrm{m}_{\text {rain }} \widehat{H}_{25^{\circ} \mathrm{C}, 1 \text { bar }}-\mathrm{m}_{\text {vap }} \widehat{H}_{20^{\circ} \mathrm{C}, 1 \text { bar }}+\mathrm{Q}_{\text {net }}

Enthalpies

\widehat{\mathrm{H}}_{25^{\circ} \mathrm{C}, 1 \text { bar }}= Liquid water at 25°C and 1 bar ≈ Saturated liquid water at 25^{\circ} \mathrm{C} \rightarrow 104.8 \frac{\mathrm{kJ}}{\mathrm{kg}}

\widehat{\mathrm{H}}_{20^{\circ} \mathrm{C}, 1 \text { bar }}= Water vapor at 20°C and 1 bar ≈ Saturated water vapor at 20^{\circ} \mathrm{C} \rightarrow 2537.4 \frac{\mathrm{kJ}}{\mathrm{kg}}

\widehat{\mathrm{U}}_{\text {initial }}= Liquid water at 20°C and 1 bar ≈ Saturated liquid water at 20^{\circ} \mathrm{C} \rightarrow 83.9 \frac{\mathrm{kJ}}{\mathrm{kg}}

\widehat{\mathrm{U}}_{\text {final }}= Liquid water at 21°C and 1 bar ≈ Saturated liquid water at 21^{\circ} \mathrm{C} \rightarrow Must be interpolated

Interpolate

\begin{aligned}& y=\frac{\left(y_{2}-y_{1}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{1}\right)}+y_{1}\\& y=\frac{(104.8-83.9)(21-20)}{(25-20)}+83.9=\bf 92.4 \frac{\mathbf{k J}}{\mathbf{k g}}\end{aligned}

\begin{array}{|c|c|c|c|}\hline&1&&2 \\\hline \text{Specific Energy (y) }&83.9&???&104.8\\\hline\text{Temperature (x)}&20&21&25\\\hline\end{array}

Set up a mass balance to solve for M_{\text {final }}

\begin{aligned}& M_{\text {final }}-M_{\text {initial }}=m_{\text {in }}-m_{\text {out }}\\& \mathrm{M}_{\text {final }}-20000 \mathrm{~kg}=200 \mathrm{~kg}-50 \mathrm{~kg}\\& \mathrm{M}_{\text {final }}=20150 \mathrm{~kg}\\ \end{aligned}

Plugging into the energy balance for the lake

\begin{aligned}& (20150 \mathrm{kg})\left(92.4 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)-(20000 \mathrm{kg})\left(83.9 \frac{\mathrm{kJ}}{\mathrm{kg}}\right) \\& =(200 \mathrm{kg})\left(104.8 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)-(50 \mathrm{kg})\left(2537.4 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)+Q_{n e t}\\& \mathrm{Q}_{\text {net }}=\bf 289,770 \mathbf{~kJ}\end{aligned}

Related Answered Questions