A) Set up an energy balance around the Flash chamber
\begin{aligned}\frac{\mathrm{d}}{\mathrm{dt}}\left\{\mathrm { M } \left(\widehat{\mathrm{U}}+\frac{\mathrm{v}^{2}}{2} +\mathrm{gh}\right)\right\} \\& =\dot{\mathrm{m}}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}+\frac{\mathrm{v}_{\text {in }}^{2}}{2}+\mathrm{gh}_{\mathrm{in}}\right)-\dot{\mathrm{m}}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\mathrm{out}}+\frac{\mathrm{v}_{\mathrm{out}}^{2}}{2}+g h_{\mathrm{out}}\right)+\dot{\mathrm{W}}_{\mathrm{S}}+\dot{\mathrm{W}}_{\mathrm{EC}}+\dot{\mathrm{Q}}\end{aligned}
Cancelling terms
\begin{gathered}0=\dot{\mathrm{m}}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}\right)-\dot{\mathrm{m}}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\mathrm{out}}\right)\\\dot{\mathrm{m}}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}\right)=\dot{\mathrm{m}}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\mathrm{out}}\right)\end{gathered}
Find \widehat{\mathrm{H}}_{\mathrm{in}}
Liquid water at 25 bar and 200°C → Interpolation Needed
Interpolate between data at 50 bar and saturated liquid at 200°C (15.5 bar) :
\begin{array}{|c|c|c|c|} \hline & 1 & & 2\\\hline \text{Enthalpy (y) } & 852.3 & ??? & 852.3 \\\hline \text{Pressure (x) }& 15.5 & 25 & 50\\\hline\end{array}
\begin{gathered}y=\frac{\left(y_{2}-y_{1}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{1}\right)}+y_{1}\\y=\frac{(853.7-852.3)(25-15.5)}{(50-15.5)}\\\qquad\qquad +852.3=852.7 \frac{\mathrm{kJ}}{\mathrm{kg}}\\\left(\widehat{\mathrm{H}}_{\mathrm{in}}\right)=\left(\widehat{\mathrm{H}}_{\mathrm{out}}\right)=852.7 \frac{\mathrm{kJ}}{\mathrm{kg}}\end{gathered}
Water at 1 bar and 852.7 \frac{\mathrm{kJ}}{\mathrm{kg}} \rightarrow Mixture of saturated liquid and saturated vapor
\begin{array}{|c|c|c|c|} \hline & 1 & & 2\\\hline \text{Percent Vapor (q) } & 0 & ??? & 100 \\\hline \text{Enthalpy (x) }& 417.5 & 852.7 & 2674.9\\\hline\end{array}
\begin{gathered}q=\frac{\left(q_{2}-q_{1}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{1}\right)}+q_{1}\\y=\frac{(100-0)(852.7-417.5)}{(2674.9-417.5)}+0=\mathbf{1 9 . 2 8} \% \bf vapor\end{gathered}
B) Set up an energy balance around the Flash chamber
\begin{aligned}\frac{\mathrm{d}}{\mathrm{dt}}\left\{\mathrm { M } \left(\widehat{\mathrm{U}}+\frac{\mathrm{v}^{2}}{2}+\mathrm{gh}\right)\right\} \\& =\dot{\mathrm{m}}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}+\frac{\mathrm{v}_{\text {in }}^{2}}{2}+\mathrm{gh}_{\mathrm{in}}\right)-\dot{\mathrm{m}}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\mathrm{out}}+\frac{\mathrm{v}_{\mathrm{out}}^{2}}{2}+g h_{\mathrm{out}}\right)+\dot{\mathrm{W}}_{\mathrm{S}}+\dot{\mathrm{W}}_{\mathrm{EC}}+\dot{\mathrm{Q}}\end{aligned}
Cancelling terms
\begin{gathered}0=\dot{\mathrm{m}}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}\right)-\dot{\mathrm{m}}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\text {out }}\right)+\dot{\mathrm{Q}}\\\dot{\mathrm{m}}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\mathrm{out}}\right)-\dot{\mathrm{m}}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}\right)=\dot{\mathrm{Q}}\end{gathered}
Find \widehat{\mathrm{H}}_{\text {out }}
Water/steam at q=0.5 and P=1 bar →
\begin{array} {|c|c|c|c|}\hline & 1 & & 2\\\hline \text{Enthalpy (y)} & 417.5 & ??? & 2674.9 \\\hline \text{Vapor Fraction (q) }& 0 & 50 & 100 \\\hline\end{array}
\begin{aligned}& y=\frac{\left(y_{2}-y_{1}\right)\left(q-q_{1}\right)}{\left(q_{2}-q_{1}\right)}+y_{1} \\& y=\frac{(2674.9-417.5)(50-0)}{(100-0)} \\& \qquad\qquad +417.5 \\& \qquad\qquad =1546.2 \frac{\mathrm{kJ}}{\mathrm{kg}}\\ & 5 \frac{\mathrm{kg}}{\mathrm{sec}}\left(1546.2 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)-5 \frac{\mathrm{kg}}{\mathrm{sec}}\left(852.7 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)=\dot{\mathrm{Q}}\\ & \dot{\mathrm{Q}}=\bf 3467.5 \frac{\mathbf{kJ}}{\mathbf{sec}}\end{aligned}