Question 3.24: This problem presents a comparison of the work required in a...

This problem presents a comparison of the work required in adiabatic pumps and compressors.

A) Saturated water vapor enters a steady-state compressor at P=1 bar. Estimate the work required to compress this vapor up to P=10 bar and T=400°C.
B) Saturated liquid water at P=1 bar enters a pump. Estimate the work required to pump the liquid up to P=10 bar, and estimate the temperature of the exiting liquid.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

A) Set up an energy balance around the compressor

\begin{aligned}& \frac{\mathrm{D}}{\mathrm{dt}}\left\{\mathrm{M}\left(\widehat{\mathrm{U}}+\frac{\mathrm{v}^{2}}{2}+\mathrm{gh}\right)\right\}=\dot{\mathrm{m}}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}+\frac{\mathrm{v}_{\text {in }}^{2}}{2}+g h_{\mathrm{in}}\right)-\dot{\mathrm{m}}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\text {out }}+\frac{\mathrm{v}_{\text {out }}^{2}}{2}+\mathrm{gh}_{\mathrm{out}}\right)+ \\& \dot{\mathrm{W}}_{\mathrm{S}}+\dot{\mathrm{W}}_{\mathrm{EC}}+\dot{\mathrm{Q}}\end{aligned}

Cancelling terms

0=\dot{\mathrm{m}}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}\right)-\dot{\mathrm{m}}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\mathrm{out}}\right)+\dot{\mathrm{W}}_{\mathrm{S}}

Find \widehat{\mathrm{H}}_{\mathrm{in}}

Saturated water vapor at 1 bar \rightarrow 2674.9 \frac{\mathrm{kJ}}{\mathrm{kg}}

Find \widehat{\mathrm{H}}_{\text {out }}

Water at 10 bar and 400°C \rightarrow 3264.5 \frac{\mathrm{kJ}}{\mathrm{kg}}

\begin{gathered}0=\dot{\mathrm{m}}_{\mathrm{in}}\left(2674.9 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)-\dot{\mathrm{m}}_{\mathrm{out}}\left(3264.5 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)+\dot{\mathrm{W}}_{\mathrm{S}}\\\frac{\dot{W}_{s}}{\dot{m}}=\bf 589.5 \frac{k J}{kg}\end{gathered}

B) Apply equation 3.77

\begin{gathered}\frac{\dot{W}_{s}}{\dot{m}} \approx \hat{V}\left(P_{\text {out }}-P_{\text {in }}\right)\\\frac{\dot{W}_{s}}{\dot{m}}=\left(0.001043 \frac{m^{3}}{\mathrm{~kg}}\right)(10-1 \,\rm bar \left(\frac{100 \mathrm{~cm}}{m}\right)^{3}\left(\frac{8.314 \frac{\mathrm{J}}{\mathrm{mol\,K}}}{83.14 \frac{b a r \,cm^{3}}{m o l \,K}}\right)\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right)\\=\bf0.94 \frac{k J}{k g}\end{gathered}

The energy balance around the pump is the same as that around the compressor:

\begin{gathered}0=\dot{\mathrm{m}}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}\right)-\dot{\mathrm{m}}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\mathrm{out}}\right)+\dot{\mathrm{W}}_{\mathrm{S}}\\\frac{\dot{W}_{s}}{\dot{m}}=\widehat{\mathrm{H}}_{\mathrm{out}}-\widehat{\mathrm{H}}_{\mathrm{in}}\end{gathered}

Entering is saturated liquid at 1 bar, which has a temperature of 99.6°C :

\widehat{\mathrm{H}}_{\mathrm{out}}=417.5+0.94=418.5 \frac{\mathrm{kJ}}{\mathrm{kg}}

Exiting liquid is at 10 bar. Interpolating between the enthalpy data for 80 and 100°C at this pressure gives T=99.7°C. The temperature is practically unchanged by the compression of the liquid.

Related Answered Questions