A small current loop L_{1} with magnetic moment 5a_{z}A\cdot m^{2} is located at the origin while another small loop current L_{2} with magnetic moment 3a_{y} A\cdot m^{2} is located at (4,-3,10). Determine the torque on L_{2}.
A small current loop L_{1} with magnetic moment 5a_{z}A\cdot m^{2} is located at the origin while another small loop current L_{2} with magnetic moment 3a_{y} A\cdot m^{2} is located at (4,-3,10). Determine the torque on L_{2}.
The torque T_{2} on the loop L_{2} is due to the field B_{1} produced by loop L_{1}. Hence
T_{2}=m_{2}\times B_{1}
Since m_{1} for loop L_{1} is along a_{z}, we find B_{1} using eq. (8.22):
B=\frac{\mu_{o}m}{4\pi r^{3}}(2\cos\theta a_{r}+\sin\theta a_{\theta })
B_{1}=\frac{\mu_{o}m_{1}}{4\pi r^{3}}(2\cos\theta a_{r}+\sin\theta a_{\theta })
Using eq. (2.23):
T=m\times B=Q_{m}\ell\times B
we transform m_{2} from Cartesian to spherical coordinates:
m_{2}=3a_{y}=3(\sin\theta \sin\phi a_{r}+\cos\theta \sin\phi a_{\theta} +\cos\phi a_{\phi })
At (4,-3,10)
r=\sqrt{4^{2}+(-3)^{2}+10^{2}}=5\sqrt{5}
\tan\theta =\frac{\rho }{z}=\frac{5}{10}=\frac{1}{2}\rightarrow \sin\theta=\frac{1}{\sqrt{5}}, \cos\theta=\frac{2}{\sqrt{5}}
\tan\phi =\frac{y}{x}=\frac{-3}{4}\rightarrow \sin\phi =\frac{-3}{5}, \cos\phi =\frac{4}{5}
Hence
B_{1}=\frac{4\pi\times 10^{-7}\times5}{4\pi625\sqrt{5}}\left(\frac{4}{\sqrt{5}}a_{r}+\frac{1}{\sqrt{5}}a_{\theta}\right)=\frac{10^{-7}}{625}(4a_{r}+a_{\theta})
m_{2}=3\left[-\frac{3a_{r}}{5\sqrt{5}}-\frac{6a_{\theta}}{5\sqrt{5}}+\frac{4a_{\phi}}{5}\right]
and
T=\frac{10^{-7}(3)}{625(5\sqrt{5})}(-3a_{r}-6a_{\theta}+4\sqrt{5}a_{\phi})\times(4a_{r}+a_{\phi})
=4.293\times10^{-11}(-8.944a_{r}+35.777a_{\theta}+21a_{\phi})
=-0.384a_{r}+1.536a_{\theta}+0.9015a_{\phi}nN\cdot m