Given that H_{1}=-2a_{x}+6a_{y}+4a_{z}A/m in region y-x-2\leq 0, where \mu_{1}=5\mu_{o}, calculate
(a) M_{1} and B_{1}
(b) H_{2} and B_{2} in region y-x-2\geq 0, where \mu_{2}=2\mu_{o}
Given that H_{1}=-2a_{x}+6a_{y}+4a_{z}A/m in region y-x-2\leq 0, where \mu_{1}=5\mu_{o}, calculate
(a) M_{1} and B_{1}
(b) H_{2} and B_{2} in region y-x-2\geq 0, where \mu_{2}=2\mu_{o}
Since y-x-2=0 is a plane,y-x\leq 2 or y\leq x+2 is region 1 in Figure 8.17. A point in this region may be used to confirm this. For example, the origin (0,0) is in this region because 0-0-2\lt 0. If we let the surface of the plane be described by f(x,y)=y-x-2 unit vector normal to the plane is given by
a_{n}=\frac{\nabla f}{|\nabla f|}=\frac{a_{y}-a_{x}}{\sqrt{2}}
(a)
M_{1}=\chi_{m1}H_{1}=(\mu_{r1}-1)H_{1}=(5-1)(-2,6,4)=-8a_{x}+24a_{y}+16a_{z}A/m
B_{1}=\mu_{1}H_{1}=\mu_{o}\mu_{r1}H_{1}=4\pi\times 10^{-7}(5)(-2,6,4)=-12.57a_{x}+37.7a_{y}+25.13a_{z}\mu Wb/m^{2}
(b)
H_{1n}=(H_{1}\cdot a_{n})a_{n}=\left[(-2,6,4)\cdot \frac{(-1,1,0)}{\sqrt{2}}\right]\frac{(-1,1,0)}{\sqrt{2}}=-4a_{x}+4a_{y}
But
H_{1}=H_{1n}+H_{1t}
Hence
H_{1t}=H_{1}-H_{1n}=(-2,6,4)-(-4,4,0)=2a_{x}+2a_{y}+4a_{z}
Using the boundary conditions, we have
H_{2t}=H_{1t}=2a_{x}+2a_{y}+4a_{z}
B_{2n}=B_{1n}\rightarrow \mu_{2}H_{2n}=\mu_{1}H_{1n}
or
H_{2n}=\frac{\mu _{1}}{\mu_{2}}H_{1n}=\frac{5}{2}(-4a_{x}+4a_{y})=-10a_{x}+10a_{y}
Thus
H_{2}=H_{2n}+H_{2t}=-8a_{x}+12a_{y}+4a_{z}A/m
and
B_{2}=\mu_{2}H_{2}=\mu_{o}\mu_{r2}H_{2}=(4\pi \times10^{-7})(2)(-8,12,4)
=-20.11a_{x}+30.16a_{y}+10.05a_{z}\mu Wb/m^{2}