Find the potential of a uniformly charged spherical shell of radius R (Fig. 2.33).
Find the potential of a uniformly charged spherical shell of radius R (Fig. 2.33).
This is the same problem we solved in Ex. 2.7, but this time let’s do it using Eq. 2.30:
V=\frac{1}{4\pi \epsilon _{0}}\int{\frac{\lambda (\acute{r})}{\varkappa }d\acute{l} } and \quad V=\frac{1}{4\pi \epsilon _{0}}\int{\frac{\sigma (\acute{r})}{\varkappa }d\acute{a} } (2.30)
V=\frac{1}{4\pi \epsilon _{0}}\int{\frac{\sigma }{\varkappa }d\acute{a} }We might as well set the point P on the z axis and use the law of cosines to express η :
η^{2}=R^{2}+z^{2}-2Rz\cos \acute{\theta }.An element of surface area on the sphere is:R^{2}\sin \acute{\theta }d \acute{\theta }d \acute{\phi }, so
4\pi \epsilon _{0}V(z)=\sigma \int{\frac{R^{2}\sin \acute{\theta }d \acute{\theta }d \acute{\phi }}{\sqrt{R^{2}+z^{2}-2Rz\cos \acute{\theta }} } }=2\pi R^{2}\sigma \int_{0}^{\pi } {\frac{\sin \acute{\theta }}{\sqrt{R^{2}+z^{2}-2Rz\cos \acute{\theta }} } } d\acute{\theta }
=2\pi R^{2}\sigma \left({\frac{1}{Rz} {\sqrt{R^{2}+z^{2}-2Rz\cos \acute{\theta }} } }\right) \mid ^{\pi }_{0}
=\frac{2\pi R\sigma}{z} \left({{\sqrt{R^{2}+z^{2}-2Rz} }-{\sqrt{R^{2}+z^{2}-2Rz} } }\right)
=\frac{2\pi R\sigma}{z}\left[\sqrt{\left(R+z\right)^{2} }-\sqrt{\left(R-z\right)^{2} } \right]
At this stage, we must be very careful to take the positive root. For points outside
the sphere, z is greater than R, and hence \sqrt{\left(R-z\right)^{2} }=z-R ; for points inside the sphere,\sqrt{\left(R-z\right)^{2} }=R-z . Thus,
V(z)=\frac{R\sigma }{2\epsilon _{0}z}\left[\left(R+z\right)-\left(z-R\right) \right]=\frac{R^{2}\sigma }{\epsilon _{0}z}, outside;
V(z)=\frac{R\sigma }{2\epsilon _{0}z}\left[\left(R+z\right)-\left(R-z\right) \right]=\frac{R\sigma }{\epsilon _{0}}, inside.
In terms of r and the total charge on the shell,q=4\pi R^{2}\sigma
V(r)=\begin{cases}\frac{1}{4\pi \epsilon _{0}}\frac{q}{r} & (r\geq R) \quad \\\frac{1}{4\pi \epsilon _{0}}\frac{q}{R} & (r\leq R)\end{cases}Of course, in this particular case, it was easier to get V by using Eq. 2.21 than Eq. 2.30, because Gauss’s law gave us E with so little effort. But if you compare Ex. 2.8 with Prob. 2.7, you will appreciate the power of the potential formulation.
V(r)\equiv -\int_{\omicron }^{r}{E.dI} (2.21)