Question 11.2: A distortionless line has Zo = 60 Ω, α = 20 mNp/m, u = 0.6c,...

A distortionless line has Z_{o}=60\Omega,  \alpha=20 mNp/m,  u=0.6c, where c is the speed of light in a vacuum. Find R, L, G, C, and \lambda at 100  MHz.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For a distortionless line

RC=GL   or   G=\frac{RC}{L}

and hence

Z_{o}=\sqrt{\frac{L}{C}}                                         (11.2.1)

\alpha=\sqrt{RG}=R\sqrt{\frac{C}{L}}=\frac{R}{Z_{o}}                  (11.2.2a)

or

R=\alpha Z_{o}                                             (11.2.2b)

But

u=\frac{\omega}{\beta}=\frac{1}{\sqrt{LC}}                                  (11.2.3)

From eq. (11.2.2b)

R=\alpha Z_{o}=(20\times 10^{-3})(60)=1.2 \Omega/m

Dividing eq. (11.2.1) by eq. (11.2.3) results in

L=\frac{Z_{o}}{u}=\frac{60}{0.6(3\times 10^{8})}=333 nH/m

From eq. (11.2.2a)

G=\frac{\alpha^{2}}{R}=\frac{400\times 10^{-6}}{1.2}=333 \mu S/m

Multiplying eqs. (11.2.1) and (11.2.3) together gives

uZ_{o}=\frac{1}{C}

0r

C=\frac{1}{uZ_{o}}=\frac{1}{0.6(3\times 10^{8})60}=92.59 pF/m

\lambda=\frac{u}{f}=\frac{0.6(3\times10^{8})}{10^{8}}=1.8 m

Related Answered Questions