A distortionless line has Z_{o}=60\Omega, \alpha=20 mNp/m, u=0.6c, where c is the speed of light in a vacuum. Find R, L, G, C, and \lambda at 100 MHz.
A distortionless line has Z_{o}=60\Omega, \alpha=20 mNp/m, u=0.6c, where c is the speed of light in a vacuum. Find R, L, G, C, and \lambda at 100 MHz.
For a distortionless line
RC=GL or G=\frac{RC}{L}
and hence
Z_{o}=\sqrt{\frac{L}{C}} (11.2.1)
\alpha=\sqrt{RG}=R\sqrt{\frac{C}{L}}=\frac{R}{Z_{o}} (11.2.2a)
or
R=\alpha Z_{o} (11.2.2b)
But
u=\frac{\omega}{\beta}=\frac{1}{\sqrt{LC}} (11.2.3)
From eq. (11.2.2b)
R=\alpha Z_{o}=(20\times 10^{-3})(60)=1.2 \Omega/m
Dividing eq. (11.2.1) by eq. (11.2.3) results in
L=\frac{Z_{o}}{u}=\frac{60}{0.6(3\times 10^{8})}=333 nH/m
From eq. (11.2.2a)
G=\frac{\alpha^{2}}{R}=\frac{400\times 10^{-6}}{1.2}=333 \mu S/m
Multiplying eqs. (11.2.1) and (11.2.3) together gives
uZ_{o}=\frac{1}{C}
0r
C=\frac{1}{uZ_{o}}=\frac{1}{0.6(3\times 10^{8})60}=92.59 pF/m
\lambda=\frac{u}{f}=\frac{0.6(3\times10^{8})}{10^{8}}=1.8 m