Question 11.3: A certain transmission line 2 m long operating at ω = 10^6 r...

A certain transmission line 2 m long operating at \omega=10^{6} rad/s has \alpha=8 dB/m,  \beta=1 rad/m, and Z_{o}=60+j40\Omega . If the line is connected to a source of 10\angle0^{\circ} V, Z_{g}=40\Omega and terminated by a load of 20+j50\Omega, determine

(a) The input impedance

(b) The sending-end current

(c) The current at the middle of the line

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Since 1 Np=8.686 dB

\alpha =\frac{8}{8.686}=0.921 Np/m

\gamma =\alpha+j\beta=0.921+j1 /m

\gamma\ell=2(0.921+j1)=1.84+j2

Using the formula for \tanh(x+jy) in Appendix A.3, we obtain

\tanh\gamma\ell=1.033-j0.03929

Z_{in}=Z_{o}\left(\frac{Z_{L}+Z_{o}\tanh\gamma\ell}{Z_{o}+Z_{L}\tanh\gamma\ell} \right)

=(60+j40)\left[\frac{20+j50+(60+j40)(1.033-j0.03929)}{60+j40+(20+j50)(1.033-j0.03929)} \right]

Z_{in}=60.25+j38.79\Omega

(b) The sending-end current is I(z = 0) = I_{o}. From eq. (11.28):

V_{o}=\frac{Z_{in}}{Z_{in}+Z_{g}}V_{g},       I_{o}=\frac{V_{g}}{Z_{in}+Z_{g}}

I(z=0)=\frac{V_{g}}{Z_{in}+Z_{g}}=\frac{10}{60.25+j38.79+40}=93.03\angle-21.15^{\circ} mA

(c) To find the current at any point, we need V_{o}^{+} and V_{o}^{-}. But

I_{o}=I(z=0)=93.03\angle-21.15^{\circ} mA

V_{o}=Z_{in}I_{o}=(71.66\angle32.77^{\circ})(0.09303\angle-21.15^{\circ})=6.667\angle11.62^{\circ} V

From eq. (11.27):

V_{o}^{+}=\frac{1}{2}(V_{o}+Z_{o}I_{o}),       V_{o}^{-}=\frac{1}{2}(V_{o}-Z_{o}I_{o})

V_{o}^{+}=\frac{1}{2}(V_{o}+Z_{o}I_{o})=\frac{1}{2}[6.667\angle11.62^{\circ}+(60+j40)(0.09303\angle-21.15^{\circ})]=6.687\angle12.08^{\circ}

V_{o}^{-}=\frac{1}{2}(V_{o}-Z_{o}I_{o})=0.0518\angle260^{\circ}

At the middle of the line, z=\ell/2,   \gamma z=0.921+j1. Hence, the current at this point is

I_{s}(z=\ell/2)=\frac{V_{o}^{+}}{Z_{o}}e^{-\gamma z}-\frac{V_{o}^{-}}{Z_{o}}e^{\gamma z}

=\frac{(6.687e^{j12.08^{\circ}})e^{-0.921-j1}}{60+j40}-\frac{(0.0518e^{j260^{\circ}})e^{0.921+j1}}{60+j40}

Note that j1 is in radians and is equivalent to j57.3^{\circ}. Thus,

I_{s}(z=\ell/2)=\frac{6.687e^{j12.08^{\circ}}e^{-0.921}e^{-j57.3^{\circ}}}{72.1e^{j33.69^{\circ}}}-\frac{0.0518e^{j260^{\circ}}e^{0.921}e^{j57.3^{\circ}}}{72.1e^{33.69^{\circ}}}

=0.0369e^{-j78.91^{\circ}}-0.001805e^{j283.61^{\circ}}=6.673-j34.456 mA=35.10\angle281^{\circ} mA

Related Answered Questions