The hook is subjected to the force of 80 lb. Determine the state of stress at point B at section . The cross section has a diameter of 0.5 in. Use the curved-beam formula to compute the bending stress.
The hook is subjected to the force of 80 lb. Determine the state of stress at point B at section . The cross section has a diameter of 0.5 in. Use the curved-beam formula to compute the bending stress.
The location of the neutral surface from the center of curvature of the hook, Fig. a, can be determined from
R=\frac{A}{\sum \int_{A} \frac{d A}{r}}Where A=\pi\left(0.25^{2}\right)=0.0625 \pi \mathrm{in}^{2}
\Sigma \int_{A} \frac{d A}{r}=2 \pi\left(\bar{r}-\sqrt{r^{2}-c^{2}}\right)=2 \pi\left(1.75-\sqrt{1.75^{2}-0.25^{2}}\right)=0.11278 \mathrm{in}
Thus,
R=\frac{0.0625 \pi}{0.11278}=1.74103 \mathrm{in}Then
e=\bar{r}-R=1.75-1.74103=0.0089746 \mathrm{in}Referring to Fig. b, I and Q_{B} are computed as
I=\frac{\pi}{4}\left(0.25^{4}\right)=0.9765625\left(10^{-3}\right) \pi \mathrm{in}^{4}
Q_{B}=\bar{y}^{\prime} A^{\prime}=\frac{4(0.25)}{3 \pi}\left[\frac{\pi}{2}\left(0.25^{2}\right)\right]=0.0104167 \mathrm{in}^{3}
Consider the equilibrium of the FBD of the hook’s cut segment, Fig. c,
\overset{+}{\leftarrow } \Sigma F_{x}=0 ; \quad N-80 \cos 45^{\circ}=0 \quad N=56.57 \mathrm{lb}
+\uparrow \Sigma F_{y}=0 ; \quad 80 \sin 45^{\circ}-V=0 \quad V=56.57 \mathrm{lb}
\curvearrowleft +\Sigma M_{o}=0 ; \quad M-80 \cos 45^{\circ}(1.74103)=0 \quad M=98.49 \mathrm{lb} \cdot \mathrm{in}
The normal stress developed is the combination of axial and bending stress. Thus,
\sigma=\frac{N}{A}+\frac{M(R-r)}{A e r}Here, M=98.49 \mathrm{lb \cdot in} since it tends to reduce the curvature of the hook. For point B, r=1.75 in. Then
\sigma=\frac{56.57}{0.0625 \pi}+\frac{(98.49)(1.74103-1.75)}{0.0625 \pi(0.0089746)(1.75)}
=1.48 \mathrm{psi}(T)
The shear stress is contributed by the transverse shear stress only. Thus,
\tau=\frac{V Q_{B}}{I t}=\frac{56.57(0.0104167)}{0.9765625\left(10^{-3}\right) \pi(0.5)}=384 \mathrm{psi}The state of stress of point B can be represented by the element shown in Fig. d.