Question 7.19: You are designing a process in which benzene is used as a so...

You are designing a process in which benzene is used as a solvent. In order to size process equipment, you need to know the properties at several conditions. Estimate:

A) The molar volume at the critical point
B) The molar volume in the liquid phase at T=500°R and P=1 atm
C) The molar volume in the vapor phase at T=800°R and P=4 atm
D) The change in molar enthalpy when benzene is heated and compressed from T=500°R and P=1 atm to T=800°R and P=4 atm

From Appendix C,

{ T }_{ C } = 562.05 K
{ P }_{ C } = 48.95 bar
ω = 0.216

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

A) Using Peng-Robinson Equation at its Critical Point

\begin{aligned}& \mathrm{k}=0.3746+1.54226 \omega-0.2699 \omega^2 \\& \mathrm{k}=0.3746+1.54226(0.216)-0.2699(0.216)^2=0.6866\end{aligned}

\begin{aligned}& \alpha=\left(1+\mathrm{k}\left(1-\mathrm{T}_{\mathrm{r}}^{0.5}\right)\right)^2 \\& \alpha=\left(1+0.6866\left(1-(1)^2\right)\right)^2=1 \\& \mathrm{a}_{\mathrm{c}}=\frac{0.45724 \mathrm{R}^2 \mathrm{~T}_{\mathrm{c}}^2}{\mathrm{P}_{\mathrm{c}}} \\& \mathrm{a}_{\mathrm{c}}=\frac{0.45724\left(8.314 \times 10^{-5} \frac{\mathrm{m}^3 \mathrm{bar}}{\mathrm{mol} \,\mathrm{K}}\right)^2(562.05 \mathrm{~K})^2}{(48.95 ~\mathrm{bar})} \\& \mathrm{a}_{\mathrm{c}}=2.03 \times 10^{-5} \frac{\mathrm{m}^6 \mathrm{bar}}{\mathrm{mol}^2} \\& \mathrm{a}=\mathrm{a}_{\mathrm{c}} \alpha\end{aligned}

\begin{aligned}& \mathrm{a}=2.03 \times 10^{-5} \frac{\mathrm{m}^6 \mathrm{bar}}{\mathrm{mol}^2} \times 1=2.03 \times 10^{-5} \frac{\mathrm{m}^6 \mathrm{bar}}{\mathrm{mol}^2} \\& \mathrm{~b}=\frac{0.07780 \mathrm{RT}_{\mathrm{c}}}{\mathrm{P}_{\mathrm{c}}} \\& \mathrm{b}=\frac{0.07780\left(8.314 \times 10^{-5} \frac{\mathrm{m}^3 \mathrm{bar}}{\mathrm{mol} \,\mathrm{K}}\right)(562.05 \mathrm{~K})}{(48.95~ \mathrm{bar})}=7.427 \times 10^{-5} \frac{\mathrm{m}^3}{\mathrm{~mol}}\end{aligned}

Plug a and b into the PR Equation

\begin{aligned}& P=\frac{R T}{\underline{V}-b}-\frac{a}{\underline{V}(\underline{V}+b)+b(\underline{V}-b)} \\& 48.95~ \mathrm{bar}=\frac{\left(8.314 \times 10^{-5} \frac{\mathrm{m}^3 \mathrm{bar}}{\mathrm{mol} \,\mathrm{K}}\right)(562.05 \mathrm{~K})}{\underline{\mathrm{V}}-\left(7.427 \times 10^{-5} \frac{\mathrm{m}^3}{\mathrm{~mol}}\right)} \\& -\frac{2.03 \times 10^{-5} \frac{\mathrm{m}^6 \mathrm{bar}}{\mathrm{mol}^2}}{\underline{\mathrm{V}}\left(\underline{\mathrm{V}}+\left(7.427 \times 10^{-5} \frac{\mathrm{m}^3}{\mathrm{~mol}}\right)\right)+\left(7.427 \times 10^{-5} \frac{\mathrm{m}^3}{\mathrm{~mol}}\right)\left(\underline{\mathrm{V}}-\left(7.427 \times 10^{-5} \frac{\mathrm{m}^3}{\mathrm{~mol}}\right)\right)} \\& \underline{\mathrm{V}}^{\mathrm{L}}=\underline{\mathrm{V}}^{\mathrm{L}}=2.836 \times 10^{-4} \frac{\mathrm{m}^3}{\mathrm{~mol}} \end{aligned}

B) Using the same calculations as in part A), we find

\mathrm{a}=2.96 \times 10^{-5} \frac{\mathrm{m}^6 \mathrm{bar}}{\mathrm{mol}^2}

Of course, b does not need to be recalculated because it is not temperature dependent

\mathrm{b}=7.427 \times 10^{-5} \frac{\mathrm{m}^3}{\mathrm{~mol}}

Converting, we find

\begin{aligned}& \mathrm{P}=1 \mathrm{~atm}=1.01325~ \mathrm{bar} \\& \mathrm{T}=500^{\circ} \quad \mathrm{R}=277.8 \mathrm{~K}\end{aligned}

Plugging into the PR Equation

\begin{aligned}& 1.01325~ \mathrm{bar}=\frac{\left(8.314 \times 10^{-5} \frac{\mathrm{m}^3 \mathrm{bar}}{\mathrm{mol} \,\mathrm{K}}\right)(277.8 \mathrm{~K})}{\underline{\mathrm{V}}-\left(7.427 \times 10^{-5} \frac{\mathrm{m}^3}{\mathrm{~mol}}\right)} \\& -\frac{2.96 \times 10^{-5} \frac{\mathrm{m}^6 \mathrm{bar}}{\mathrm{mol}^2}}{\underline{\mathrm{V}}\left(\underline{\mathrm{V}}+\left(7.427 \times 10^{-5} \frac{\mathrm{m}^3}{\mathrm{~mol}}\right)\right)+\left(7.427 \times 10^{-5} \frac{\mathrm{m}^3}{\mathrm{~mol}}\right)\left(\underline{\mathrm{V}}-\left(7.427 \times 10^{-5} \frac{\mathrm{m}^3}{\mathrm{~mol}}\right)\right)} \\& \underline{\mathrm{V}}^{\mathrm{L}}=8.676 \times 10^{-5} \frac{\mathrm{m}^3}{\mathrm{~mol}}\end{aligned}

C) Using the same calculations as in part B), we find

\mathrm{a}=2.36 \times 10^{-5} \frac{\mathrm{m}^6 \mathrm{bar}}{\mathrm{mol}^2}

Of course, b does not need to be recalculated because it is not temperature dependent

\mathrm{b}=7.427 \times 10^{-5} \frac{\mathrm{m}^3}{\mathrm{~mol}}

Converting, we find

\begin{aligned}& \mathrm{P}=4 \mathrm{~atm}=4.053 ~\mathrm{bar} \\& \mathrm{T}=800^{\circ} \quad \mathrm{R}=444.4 \mathrm{~K}\end{aligned}

Plugging into the PR Equation

\begin{aligned}& \text { 4.053 bar } \\& =\frac{\left(8.314 \times 10^{-5} \frac{\mathrm{m}^3 \mathrm{bar}}{\mathrm{mol} \,\mathrm{K}}\right)(444.4 \mathrm{~K})}{\underline{\mathrm{V}}-\left(7.427 \times 10^{-5} \frac{\mathrm{m}^3}{\mathrm{~mol}}\right)} \\& -\frac{2.96 \times 10^{-5} \frac{\mathrm{m}^6 \mathrm{bar}}{\mathrm{mol}^2}}{\underline{\mathrm{V}}\left(\underline{\mathrm{V}}+\left(7.427 \times 10^{-5} \frac{\mathrm{m}^3}{\mathrm{~mol}}\right)\right)+\left(7.427 \times 10^{-5} \frac{\mathrm{m}^3}{\mathrm{~mol}}\right)\left(\underline{\mathrm{V}}-\left(7.427 \times 10^{-5} \frac{\mathrm{m}^3}{\mathrm{~mol}}\right)\right)} \\& \underline{\mathrm{V}}^{\mathrm{V}}=8.637 \times 10^{-3} \frac{\mathrm{m}^3}{\mathrm{~mol}^3}\end{aligned}

D) The change in molar enthalpy when benzene is heated and compressed from T=500°R and P=1 atm to T=800°R and P=4 atm

State 1:

\begin{aligned}& \mathrm{T}_1=500^{\circ} \mathrm{R}=277.8 \mathrm{~K} \\& \mathrm{P}_1=1 \mathrm{~atm}=1.01325 ~\mathrm{bar} \\& \mathrm{T}_{\mathrm{r} 1}=\frac{277.8 \mathrm{~K}}{562.05 \mathrm{~K}}=0.4943 \\& \mathrm{P}_{\mathrm{r} 1}=\frac{1.013 \,\mathrm{bar}}{48.95~ \mathrm{bar}}=0.0207\end{aligned}

State 2:

\begin{aligned}& \mathrm{T}_2=800^{\circ} \mathrm{R}=444.4 \mathrm{~K} \\& \mathrm{P}_2=4 \mathrm{~atm}=4.053 \mathrm{bar} \\& \mathrm{T}_{\mathrm{r} 2}=\frac{444.4 \mathrm{~K}}{562.05 \mathrm{~K}}=0.7907 \\& \mathrm{P}_{\mathrm{r} 2}=\frac{4.053~ \mathrm{bar}}{48.95~ \mathrm{bar}}=0.0828\end{aligned}

The equation we will be using to find the difference of molar enthalpies

\underline{\mathrm{H}}_2-\underline{\mathrm{H}}_1=\left(\underline{\mathrm{H}}_2-\underline{\mathrm{H}}_2^{\mathrm{ig}}\right)+\left(\underline{\mathrm{H}}_2^{\mathrm{ig}}-\underline{\mathrm{H}}_1^{\mathrm{ig}}\right)-\left(\underline{\mathrm{H}}_1-\underline{\mathrm{H}}_1^{\mathrm{ig}}\right)

Using the Lee Kesler Correlation Residuals Enthalpy Values

\begin{aligned}& \frac{\left(\underline{\mathrm{H}}_1-\underline{\mathrm{H}}_1^{\mathrm{ig}}\right)}{\mathrm{RT}_{\mathrm{c}}}=\left[\frac{\underline{\mathrm{H}}-\underline{\mathrm{H}}_{\mathrm{ig}}}{\mathrm{RT}_{\mathrm{c}}}\right]^0+\omega\left[\frac{\underline{\mathrm{H}}-\underline{\mathrm{H}}_{\mathrm{ig}}}{\mathrm{RT}}\right]_{\mathrm{c}}^1=-5.482+(0.216)(-8.942)=-7.413 \\& \left(\underline{\mathrm{H}}_1-\underline{\mathrm{H}}_1^{\mathrm{ig}}\right)=(-7.413)\left(8.314 \frac{\mathrm{J}}{\mathrm{mol~K}}\right)(562.05 \mathrm{~K})=-34.64 \frac{\mathrm{kJ}}{\mathrm{mol}} \\& \frac{\left(\underline{\mathrm{H}}_2-\underline{\mathrm{H}}_2^{\mathrm{ig}}\right)}{\mathrm{RT}_{\mathrm{c}}}=\left[\frac{\underline{\mathrm{H}}-\underline{\mathrm{H}}_{\mathrm{ig}}}{\mathrm{RT}_{\mathrm{c}}}\right]^0+\omega\left[\frac{\underline{\mathrm{H}}-\underline{\mathrm{H}}_{\mathrm{ig}}}{\mathrm{RT}}\right]_{\mathrm{c}}^1=-0.134+(0.216)(-0.199)=-0.177 \\& \left(\underline{\mathrm{H}}_2-\underline{\mathrm{H}}_2^{\mathrm{ig}}\right)=(-0.177)\left(8.314 \frac{\mathrm{J}}{\mathrm{mol~K}}\right)(562.05 \mathrm{~K})=-0.827 \frac{\mathrm{kJ}}{\mathrm{mol}}\end{aligned}

Find the \left(\underline{H}_2^{\mathrm{ig}}-\underline{H}_1^{\mathrm{ig}}\right)

\left(\underline{\mathrm{H}}_2^{\mathrm{ig}}-\underline{\mathrm{H}}_1^{\mathrm{ig}}\right)=\mathrm{dH}=\mathrm{C}_{\mathrm{P}}^* \mathrm{dT}

Using Appendix D

\frac{C_P^*}{\mathrm{R}}=\mathrm{A}+\mathrm{BT}+\mathrm{CT}^2+\mathrm{DT}^3+\mathrm{ET}^4

\begin{array}{|c|c|c|c|c|c|c|}\hline \bf{Name} & \bf {Formula} & \bf A & \bf B\times10^3 & \bf C\times10^5 & \bf D\times10^8 & \bf E\times10^{11}\\ \hline \rm{Benzene} & \rm C_6H_6 & 3.551 & -6.184 & 14.365 & -19.807 & 8.234\\ \hline\end{array}

\begin{aligned}&\mathrm{C}_{\mathrm{P}}^*=\mathrm{R}\left(3.551-6.184 \times 10^{-3} \mathrm{~T}+1.437 \times 10^{-4} \mathrm{~T}^2-1.981 \times 10^{-7} \mathrm{~T}^3+8.234\right. \\& \qquad\times 10^{-11}\rm T^4)\\&\mathrm{dH}=\int_{277.8 \mathrm{~K}}^{444.4 \mathrm{~K}} \mathrm{x}\left(3.551-6.184 \times 10^{-3} \mathrm{~T}+1.437 * 10^{-4} \mathrm{~T}^2-1.981 \times 10^{-7} \mathrm{~T}^3+8.234\right.\\ & \qquad \times 10^{-11}\rm T^4)\rm dT \\\\ & \mathrm{dH}=16.78 \frac{\mathrm{kJ}}{\mathrm{mol}}\\\\ & \underline{\mathrm{H}}_2-\underline{\mathrm{H}}_1=\left(-0.827 \frac{\mathrm{kJ}}{\mathrm{mol}}\right)+\left(16.78 \frac{\mathrm{kJ}}{\mathrm{mol}}\right)-\left(-34.64 \frac{\mathrm{kJ}}{\mathrm{mol}}\right)=\mathbf{5 0 . 5 9} \frac{\mathbf{k J}}{\mathbf{m o l}}\end{aligned}

Related Answered Questions