Question 12.11.2: Consider the reduction of solid ZnO by CO to form Zn vapor a...

Consider the reduction of solid ZnO by CO to form Zn vapor and CO_2 according to

ZnO_{(s)}+CO_{(g)}=Zn_{(v)}+CO_2(g)            (i)

For ZnO_{(s)} =Zn_{(v)}+½O_{2(g)}

 

\Delta G^{\circ }_{(ii)}=460,200-198T   J               (ii)

For CO_{(g)} +½  O_{2(g)}=CO_{2(g)}

\Delta G^{\circ }_{(iii)}=282,400+86.81T   J            (iii)

Summing  \Delta G^{\circ }_{(ii)}   and  \Delta G^{\circ }_{(iii)}   gives

\Delta G^{\circ }_{(i)}-177,800-111.2T   J

The equilibrium involves three components (Zn, O, and C) and two phases (a solid and a gas), and thus, from the phase rule, has

F = C + 2 – Φ = 3 + 2 – 2 = 3 degrees of freedom

However, the stoichiometric requirement that  p_{Zn} =p_{CO_2}  uses one of the degrees of freedom, and thus, the equilibrium is fixed when the temperature and total pressure are fixed.

a. Calculate the composition of the gas phase at 950°C and P = 1 atm.

b. To what value must the total pressure of the gas mixture be increased in order to cause condensation of the zinc vapor at 1223 K?
c. Calculate the composition of the gas phase if the total pressure is increased to 150 atm at 1223 K.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a. At 1223 K,

\Delta G^{\circ }_{(i)}=177,800-(111.2\times 1223)=41,800   J

and thus,

K_{(iii) 1223  K}=exp\left\lgroup\frac{-41,800}{8.3144\times 1223} \right\rgroup =0.0164=\frac{p_{Zn}p_{CO_2}}{p_{CO}}

From the stoichiometry, p_{Zn} =p_{CO_2}   and the total pressure P is

P=p_{CO}+p_{Zn}+p_{CO_2}                         (iv)

Thus, with P = 1 atm, p_{CO} =1-2p_{Zn}  and

0.0164=\frac{p^{2}_{Zn} }{1-2_{Zn}}              (v)

which has the solution  p_{Zn}=0.113   atm. Therefore,  p_{CO_2}=0.113   atm and p_{CO}=1-(2\times 0.113) =0.775  atm. At P = 1 atm, the mole fractions of the species in the gas phase are equal to their partial pressures.
b. Condensation occurs when the partial pressure of Zn reaches the value of the saturated vapor pressure of liquid zinc at 1223 K. The saturated vapor pressure of liquid zinc is given by

\ln p^{\circ }_{Zn,(l)}(atm)=\frac{-15,250}{T}-1.255\ln T+21.79

which gives  p^{\circ }_{Zn,(l)}=1.49   atm at 1223 K. Therefore,

K_{(iii) 1223  K}=0.0164=\frac{1.49^2}{P-(2\times 1.49)}

which has the solution P = 138 atm. Thus, p_{Zn}=p_{CO}=1.49  atm  and p_{CO_2}=138-(2\times 1.49)=135  atm. At the point of condensation of zinc, the mole fractions of the species in the gas phase are X_{Zn}=X_{CO_2}=1.49/138=0.011  and X_{CO}=135/138=0.978.

c. The system now contains three phases and the equilibrium thus has two degrees of freedom. Condensation of the zinc eliminates the stoichiometric requirement that p_{Zn}=p_{CO_2}, but phase equilibrium between liquid zinc and zinc vapor at 1223 K requires that the partial pressure of zinc be the saturated value of 1.49 atm. Thus,

K_{1223  K} =0.0164=\frac{1.49\times p_{CO_2}}{p_{CO}}            (vi)

and

p=150=1.49+p_{CO}+P_{CO_2}             (vii)

Simultaneous solution of Equation (vi) and (vii) gives p_{CO}=146.9   atm and p_{CO_2}=1.61   atm. The mole fractions of the species in the gas phase are thus X_{Zn}=1.49/150=0.01 , X_{CO_2}=1.61/150=0.011 , and X_{CO}=146.9/150=0.98 .

Further considerations :

i . Consider, now, the reduction of ZnO by graphite to form zinc vapor, CO,  and CO_2 according to

ZnO_{(s)}+C_{(gr)}=Zn_{(v)}+CO_{(g)}           (viii)

and

2ZnO_{(s)}+C_{(gr)}=2Zn_{(v)}+CO_{2(g)}         (ix)

 

For 2C+O_2=2CO:

 

\Delta G^{\circ }_{(x)}=-223,400-175.3T   J               (x)

 

For C+O_2=CO_2:

 

\Delta G^{\circ }_{(xi)}=-394,100-0.84T   J             (xi)

Combination of  \Delta G^{\circ }_{(ii)}  and  \Delta G^{\circ }_{(x)}/2  gives

\Delta G^{\circ }_{(viii)}=348,500-285.7T J

for ZnO + C = Zn + CO, and combination of  2\Delta G^{\circ }_{(ii)} and  \Delta G^{\circ }_{(xi)}  gives

\Delta G^{\circ }_{(ix)}=526,300-396.8T J

for  2ZnO+C = 2Zn + CO_2.

ii . The equilibrium involves three components and three phases (ZnO, graphite, and a gas phase) and thus, according to the phase rule, has two degrees of freedom. However, as stoichiometric ZnO is the only source of oxygen and zinc in the gas phase, one of the degrees of freedom is used by the requirement that equal numbers of moles of Zn and O occur in the gas phase. Alternatively, as ZnO has a fixed composition, the system can be considered to be the quasi-binary ZnO– C, in which case the phase rule gives one degree of freedom to the equilibrium. Thus, fixing either (1) the temperature, (2) the total pressure,  (3)_{p_{Zn}} (4)_{p_{CO}} ,  or  (5)_{p_{CO_2}}   fixes the equilibrium. Determine the equilibrium state at 1223 K.

At 1223 K,  \Delta G^{\circ }_{(viii)1223  K}=-850  J  and thus,

K_{(viii)1223  K}=exp\left\lgroup\frac{850}{8.3144\times 1223} \right\rgroup =1.087=p_{Zn}p_{CO}              (xii)

and  \Delta G^{\circ }_{(ix)1223  K}=40,960  J  , in which case

K_{(ix)1223  K}=exp\left\lgroup\frac{-40,960}{8.3144\times 1223} \right\rgroup =0.018=p^{2}_{Zn}p_{CO_2}           (xiii)

The requirement that  n_{Zn}/n_O=1  in the gas phase leads to

\frac{n_{Zn}}{n_O} =1=\frac{n_{Zn}}{n_{CO}+2n_{CO_2}}= \frac{p_{Zn}}{p_{CO}+2p_{CO_2}}

Thus,

p_{Zn}=p_{CO}+2p_{CO_2}                          (xiv)

Substitution of Equations (xiv) into (xii) gives

(p_{CO}+2p_{CO_2})p_{CO}=1.08                 (xv)

and substitution of Equations (xiv) into (xiii) gives

(p_{CO}+2p_{CO_2})^2p_{CO_2}=0.018         (xvi)

Simultaneous solution of Equations (xv) and (xvi) gives  p_{CO}=1.023  atm and  p_{CO_2}=0.016  atm, and Equation xiv gives p_{Zn}=1.023+(2\times 0.016)=1.055  atm. The total pressure at which the equilibrium exists at 1223 K is thus 1.055 + 1.023 + 0.016 = 2.094 atm.

iii . Consider now the temperature at which the total pressure is 1 atm. Rewriting Equations (xii) and (xiii) to include temperature as a variable gives

K_{(viii),T}=exp\left\lgroup\frac{-\Delta G^{\circ }_{(viii)} }{RT} \right\rgroup =p_{Zn}p_{CO}

or, substituting for  \Delta G^{\circ }_{(viii)}  and p_{Zn},

 

exp\left\lgroup\frac{-348,500}{8.3144T} \right\rgroup exp\left\lgroup\frac{285.7}{8.3144} \right\rgroup =(p_{CO}+2p_{CO_2})p_{CO}            (xvii)

and

K_{(ix),T}=exp\left\lgroup\frac{-\Delta G^{\circ }_{(ix)} }{RT} \right\rgroup =p^{2}_{Zn}p_{CO_2}

or, substituting for  \Delta G^{\circ }_{(ix)}  and p_{Zn},

K_{(ix),T}=exp\left\lgroup\frac{-526,300}{8.3144T} \right\rgroup exp\left\lgroup\frac{396.8}{8.3144} \right\rgroup =(p_{CO}+2p_{CO_2})^2p_{CO_2}            (xviii)

The third equation is

P = 1 =p_{Zn}+p_{CO}+p_{CO_2}

or

1 =(p_{CO}+2p_{CO_2})+p_{CO}+p_{CO_2}            (xix)

Simultaneous solution of Equations (xvii), (xviii), and (xix) gives

T = 1172 K

p_{CO}=0.489  atm

and

p_{CO_2}=0.007  atm

Thus,  p_{Zn}=0.489+(2\times 0.007)=0.503  atm, and the total pressure is 0.489 + 0.503 + 0.007 = 1 atm.

Related Answered Questions