Question 3.9: A specified charge density σ0(θ) is glued over the surface o...

A specified charge density \sigma_{0}(\theta) is glued over the surface of a spherical shell of radius R. Find the resulting potential inside and outside the sphere.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

You could, of course, do this by direct integration:

V=\frac{1}{4\pi\epsilon _{0}}\int{\frac{\sigma _{0}}{\eta }da. }

but separation of variables is often easier. For the interior region, we have

V(r,\theta)=\sum\limits_{l=0}^{\infty }{A_{l}r^{l}P_{l}(\cos\theta)}                (r\leq R)                       (3.78)

(no B_{l} terms—they blow up at the origin); in the exterior region

V(r,\theta)=\sum\limits_{l=0}^{\infty }{\frac{B_{l}}{r^{l+1} }P_{l}(\cos\theta)}            (r\leq R)                 (3.79)

(no A_{l} terms—they don’t go to zero at infinity). These two functions must be joined together by the appropriate boundary conditions at the surface itself. First, the potential is continuous at r = R (Eq. 2.34):

\begin{cases} (i) \quad\quad V_{in}=V_{out}, \quad at\quad r=R \\(ii) \quad\quad \epsilon \frac{\partial V_{in}}{\partial r}=\epsilon _0\frac{\partial V_{out}}{\partial r}, \quad at\quad r=R \\(iii) V_{out}\rightarrow -E_0rcos\theta \quad for\quad r\gg R \end{cases}              (2.34)

Potentials

\sum\limits_{l=0}^{\infty }{A_{l}R^{l}P_{l} (\cos\theta)}=\sum\limits_{l=0}^{\infty }{\frac{B_{l}}{R^{l+1}} P_{l}(\cos\theta)}                             (3.80)

It follows that the coefficients of like Legendre polynomials are equal:

B_{l}=A_{l}R^{2l+1}.                        (3.81)

(To prove that formally, multiply both sides of Eq. 3.80 by P_{\acute{l}} (\cos \theta) \sin \theta and integrate from 0 to π, using the orthogonality relation 3.68.) Second, the radial derivative of V suffers a discontinuity at the surface (Eq. 2.36):

\frac{\delta V_{above}}{\delta n}-\frac{\delta V_{below}}{\delta n} =\frac{1}{\epsilon_{0}}\sigma         (2.36)

\left(\frac{\delta V_{out}}{\delta r}-\frac{\delta V_{in}}{\delta r}\right)\mid _{r=R} =-\frac{1}{\epsilon_{0}}\sigma_{0}(\theta)        (3.82)

Thus

-\sum\limits_{l=0}^{\infty }{(l+1)\frac{B_{l}}{R^{l+1}} P_{l}(\cos\theta)}-\sum\limits_{l=0}^{\infty }{lA_{l}R^{l-1}P_{l}( \cos\theta)}=- \frac{1}{\epsilon_{0}}\sigma_{0}(\theta) ,

or, using Eq. 3.81,

\sum\limits_{l=0}^{\infty }(2l+1)A_{l}R^{l-1}P_{l}(\cos\theta)=\frac{1}{\epsilon _{0}}\sigma _{0}(\theta)               (3.83)

From here, the coefficients can be determined using Fourier’s trick:

A_l=\frac{1}{2\epsilon _0R^{l-1}}\int_{0}^{\pi}{\sigma _0(\theta )P_l(cos\theta )sin\theta d\theta .}              (3.84)

Equations 3.78 and 3.79 constitute the solution to our problem, with the coefficients given by Eqs. 3.81 and 3.84.
For instance, if

\sigma _0(\theta )=k\cos\theta =kP_1(cos\theta )               (3.85)

for some constant k, then all the A_l’s are zero except for l = 1, and

A_1=\frac{k}{2\epsilon _0}\int_{0}^{\pi}{[P_1(cos\theta )]^2sin\theta d\theta }=\frac{k}{3\epsilon _0}.

The potential inside the sphere is therefore

V(r,\theta )=\frac{k}{3\epsilon _0}rcos\theta \quad (r\leq R),                (3.86)

whereas outside the sphere

V(r,\theta )=\frac{kR^3}{3\epsilon _0}\frac{1}{r^2} cos\theta \quad (r\geq R),             (3.87)

In particular, if σ_0(θ) is the induced charge on a metal sphere in an external
field E_0\widehat{z} so that k = 3\epsilon _0E_0 (Eq. 3.77), then the potential inside is E_0rcosθ=E_0z, and the field is -E_0\widehat{z} —exactly right to cancel off the external field, as of course it should be. Outside the sphere the potential due to this surface charge is

\sigma (\theta )=-\epsilon _0\frac{\partial V}{\partial r} \mid_{r=R}=\epsilon _0E_0\left(1+2\frac{R^3}{r^3} \right) cos\theta \mid_{r=R}=3\epsilon _0E_0cos\theta          (3.77)

 

E_0\frac{R^3}{r^2}cos\theta

consistent with our conclusion in Ex. 3.8.

Related Answered Questions