Question 12.3: Prepare Bode diagram curves for the second-order system desc...

Prepare Bode diagram curves for the second-order system described by

 \frac{d^2y}{dt^{2} } +2\xi \omega _{n}\frac{dy}{dt}  +\omega ^{2}_{n}y= \omega ^{2}_{n}x . (12.47)

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Step 1. The system transfer function is

T(s)=\frac{Y(s)}{X(s)} =\frac{\omega ^{2}_{n}}{x^{2}+2\xi \omega _{n}s+\omega ^{2}_{n} }  .     (12.48)

Step 2. The sinusoidal transfer function is

T(j\omega ) =\frac{\omega ^{2}_{n}}{(j\omega )^{2}+2\xi \omega _{n}j\omega +\omega ^{2}_{n} }=\frac{1}{1-({\omega }/{\omega _{n} })^{2}+j2\xi ({\omega }/{\omega _{n} }) }   .      (12.49)

Step 3. Develop expressions for T(ω) and \phi_{T} (ω). First, the magnitude is

T(j\omega ) =\frac{1}{\sqrt{\left[1-({\omega }/{\omega _{n} })^{2}\right] ^{2}+4\xi ^{2}({\omega }/{\omega _{n} })^{2}}}  .      (12.50)

Then the phase angle is

\phi _{T} (\omega ) =-\tan ^{-1} \frac{2\xi({\omega }/{\omega _{n} }) }{1-({\omega }/{\omega _{n} })^{2} } .     (12.51)

Step 4. Prepare the Bode diagram curves, as shown in Fig. 12.6.

12.6

Related Answered Questions