Question 13.10.1: In view of the introduction of interaction parameters, the e...

In view of the introduction of interaction parameters, the example of the Si– O equilibrium in liquid Fe, discussed in Section 13.3, can now be reexamined. In this example, it was determined that, for

Si_{(1  wt\%  in  Fe)}+O_{2(g)}=SiO_{2(s)}

 

\Delta G^\circ =-833,400+229.5T  J

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For

½O_{2(g)}=\left[O\right]_{(1  wt\%  in  Fe)}

 

\Delta G^\circ =-111,300-6.41T  J                        (i)

and thus, for

Si_{(1  wt\%  in  Fe))}+2O_{(1  wt\%  in  Fe))}=SiO_{2(s)}

 

\Delta G^\circ =-610,800+242.32T  J                     (ii)

From Equation (i) at 1600°C,

\frac{h_{O(1  wt\%)}}{p^{1/2}_{o_2}}=2.746\times 10^{3}                       (iii)

and, from Equation (ii) at 1600°C,

\frac{a_{SiO_2}}{h_{Si(1  wt\%)}h^{2}_{O(1  wt\%)}}=2.380\times 10^{4}                          (iv)

Thus, with p_{O_2}=5.57\times 10^{-12}    atm and a_{SiO_2}=1   ,Equation (iii) gives

h_{O(1  wt\%)}=6.48\times 10^3                     (v)

and Equation (iv) gives

h^{2}_{O(1  wt\%)}h_{Si(1  wt\%)}=4.0\times 10^{-5}                      (vi)

Division of Equation (vi) by h^{2}_{O(1  wt\%)}   from Equation (v) gives

h_{Si(1  wt\%)} =1                            (vii)

In the previous treatment the assumption that Si obeys Henry’ s law leads to the conclusion that

h_{Si(1  wt\%)} =wt\%Si=1

 

At 1600° C, from Table 13.1,

e^{Si}_{O}=-0.14               e^{O}_{O}=-0.2

 

e^{O}_{Si}=-0.25               e^{Si}_{Si}=-0.32

 

Thus, from Equation (v),

\log fo+\log \left[wt\%  O\right]=\log (6.48\times 10^{-3})

 

or

-0.2\times \left[wt\%  O\right]-0.14\times \left[wt\%  Si\right]+\log \left[wt\%  O\right]=-2.188                  (viii)

and from Equation (vii),

\log f_{Si}+\log \left[wt\%  Si\right]=\log (1)

 

or

0.32\left[wt\%  Si\right]-0.25 \left[wt\%  O\right]+\log \left[wt\%  Si\right] =0                     (ix)

Computer solution of Equations (viii) and (ix) gives

\left[wt\%  Si\right]=0.631   and  \left[wt\%  O\right]=0.00798

 

In the example in Section 13.3, in which the effect of dissolved oxygen was ignored and it was assumed that f_{Si}=1  , the equilibrium weight percentage of Si in iron when a_{SiO_2}=1  and p_{O_2}=5.57\times 10^{-12}  atm was 1.0. It is of interest to determine which of the two initial assumptions, that (1)   e^{Si}_{Si}=0   and (2)    e^{\circ }_{Si}=e^{Si}_{O}=0 ,  contributes more to the error in the initial calculation. Use e^{Si}_{Si}=0.32  and assume that  e^{O}_{Si}  and  e^{Si}_{O}  are zero. From Equation (ix):

0.32\left[wt\%  Si\right]+\log [wt\%  Si]=0

 

which gives [wt%  Si] = 0.629, and from Equation (viii),

-0.20\times [wt\%  O]-0.24\times 0.629+\log [wt\%  O]=-2.188

 

which gives [wt%  O] = 0.00797. The error introduced by ignoring the interaction between Si and O in solution in Fe is thus seen to be negligible in comparison with that introduced by assuming that Si obeys Henry’ s law over some initial range of composition.

table  13.1   Interaction Coefficients for Dilute Solutions of elements Dissolved in Liquid Iron at 1600° C
element( i) element(j)
Al C Co Cr H Mn N Ni O P S Si
Al 4.8 11 ــــ ــــ (34) ــــ (0.5) ــــ -160 ــــ 4.9 6
C (4.8) 22 1.2 -2.4 (72) ــــ (11.1) 1.2 (-9.7) ــــ 9 10
Co ــــ (6) ــــ ــــ (11) ــــ (4.7) ــــ (2.6) ــــ ــــ ــــ
Cr ــــ (-10) ــــ ــــ (-11) ــــ (-16.6) ــــ (-13) ــــ (-3.55) ــــ
H 1.3 6 0.18 -0.22 0 -0.14 ــــ 0 ــــ 1.1 0.8 2.7
Mn ــــ ــــ ــــ ــــ (-7.7) ــــ (-7.8) ــــ (0) ــــ (-4.3) (0)
N 0.3 13 1.1 -4.5 ــــ -2 0 1 5 5.1 1.3 4.7
Ni ــــ (5.9) ــــ ــــ (0) ــــ (4.2) 0 (2.1) ــــ (0) (1.0)
O -94 -13 0.7 -4.1 ــــ 0 (5.7) 0.6 -20 7 -9.1 -14
P ــــ ــــ ــــ ــــ (34) ــــ (11.3) ــــ (13.5) ــــ (4.3) (9.5)
S 5.8 (24) ــــ -2.2 (26) -2.5 (3.0) 0 (-18) 4.5 -2.8 6.6
Si (6.3) 24 ــــ ــــ (76) 0 (9.3) 0.5 (-25) 8.6 (5.7) 32
some interaction coefficients e_i ^j \times 10^2 for dilute solutions of elements dissolved in liquid iron at 1600° C. values in parentheses are calculated from e_i ^j = (MW_{i}/MW_{j}) e_{j}^{i}.(from J. f. elliott, m. Gleiser, and v. ramakrishna, Thermochemistry for Steelmaking , vol. 2, addison-wesley, reading, ma, 1963.)

Related Answered Questions