Helium gas from a storage tank at 1000 kPa and 310 K is flowing out through a convergent nozzle of exit area 3 cm ^{2} to another tank. When the mass flow rate is 0.15 kg s ^{-1}, determine the pressure in the second tank.
Helium gas from a storage tank at 1000 kPa and 310 K is flowing out through a convergent nozzle of exit area 3 cm ^{2} to another tank. When the mass flow rate is 0.15 kg s ^{-1}, determine the pressure in the second tank.
Given, p_{0}=1000 kPa \text { and } T_{0}=310 K. The maximum mass flow through the nozzle is at choked condition with M_{e}=1 and is given by
\dot{m}_{\max }=\sqrt{\gamma\left(\frac{2}{\gamma+1}\right)^{(\gamma+1) /(\gamma-1)} \frac{p_{0}^{2}}{R T_{0}}} A^{*}
For helium gas, \gamma=1.67 and the gas constant is given by
R=\frac{R_{u}}{\text { molecular weight }}=\frac{8314}{4.003}=2077 J ( kg K )^{-1}
Therefore,
\dot{m}_{\max }=\frac{0.7266 \times 1000 \times 10^{3}}{\sqrt{2077 \times 310}} 3 \times 10^{-4}=0.27 kg s ^{-1}
The given mass flowrate 0.15 kg s ^{-1} is less than the critical value and hence M_{e} is subsonic.
\dot{m}=0.15=\rho_{e} A_{e} V_{e}=\left(\frac{\rho_{e}}{\rho_{0}}\right) \rho_{0} A_{e} M_{e}\left(\frac{a_{e}}{a_{0}}\right) a_{0}
=\rho_{0} a_{0} A_{e} M_{e}\left(\frac{\rho_{e}}{\rho_{0}}\right)\left(\frac{T_{e}}{T_{0}}\right)^{1 / 2}
=\rho_{0} a_{0} A_{e} M_{e}\left(1+\frac{\gamma-1}{2} M_{e}^{2}\right)^{\frac{-1}{\gamma-1}}\left(1+\frac{\gamma-1}{2} M_{e}^{2}\right)^{-0.5}
For helium, \gamma=1.67, so
0.15=\rho_{0} a_{0} A_{e} M_{e}\left(1+0.33 M_{e}^{2}\right)^{-2}
Also,
\rho_{0}=\frac{p_{0}}{R T_{0}}=\frac{1000 \times 10^{3}}{2077 \times 310}
=1.553 kg m ^{-3}
a_{0}=\sqrt{\gamma R T_{0}}
=\sqrt{1.67 \times 2077 \times 310}
=1036.95 m s ^{-1}
A_{e}=3 \times 10^{-4} m ^{2}
Thus,
0.15=\frac{0.4831 M_{e}}{\left(1+0.335 M_{e}^{2}\right)^{2}}
Now let us solve for M_{e} by trial and error.
Trial 1 Let M_{e}=0.3.
RHS \approx 0.145
Trial 2 Let M_{e}=0.32.
RHS \approx 0.15
Hence, M_{e}=0.32.
By isentropic relation, we have
\frac{p_{0}}{p_{e}}=\left(1+\frac{\gamma-1}{2} M_{e}^{2}\right)^{\frac{\gamma}{\gamma-1}}=\left(1+0.335 M_{e}^{2}\right)^{2.493}
= 1.087
Thus, the pressure in the second tank is
p_{e}=\frac{p_{0}}{1.087}=\frac{1000 \times 10^{3}}{1.087}
= 919.96 kPa