Question 11.4: a) Calculate the total complex power delivered to the -conne...

a) Calculate the total complex power delivered to the -connected load of Example 11.2.

b) What percentage of the average power at the sending end of the line is delivered to the load?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a) Using the a-phase values from the solution of Example 11.2, we obtain

V_{\phi} =\pmb{V}_{AB} = 202.72 \angle 29.04^{\circ} V,

I_{\phi} = \pmb{I}_{AB} = 1.39 \angle -6.87^{\circ} A.

Using Eqs. 11.52 S_{\phi} = p_{\phi} + jQ_{\phi} = V_{\phi}I^{*}_{\phi},and 11.53S_{T}=3S_{\phi}=\sqrt{3}V_{L}I_{L}\angle\theta_{\phi}, we have

S_{T} = 3\left(202.72 \angle 29.04^{\circ}\right)\left(1.39 \angle 6.87^{\circ}\right)

= 682.56 + j494.21 VA.

b) The total power at the sending end of the distribution line equals the total power delivered to the load plus the total power lost in the line;

therefore

p_{input}= 682.56+ 3\left(2.4 \right)^{2}\left(0.3 \right)

= 687.74 W.

The percentage of the average power reaching the load is 682.56/ 687.74 , or 99.25% Nearly 100% of the average power at the input is delivered to the load because the impedance of the line is quite small compared to the load impedance.

Related Answered Questions