Question 11.6: Calculate the reading of each wattmeter in the circuit in Fi...

Calculate the reading of each wattmeter in the circuit in Fig. 11.20 if the phase voltage at the load is 120 V and (a)Z_{\phi}= 8 + j6 \Omega; (b)Z_{\phi}= 8 -j6 \Omega; (c) Z_{\phi} = 5 + j5\sqrt{3}\Omega; and (d)Z_{\phi}= 10 \angle -75^{\circ}\Omega (e) Verify for (a)–(d) that the sum of the wattmeter readings equals the total power delivered to the load.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a)Z_{\phi}= 10 \angle 36.87^{\circ}\Omega,V_{L}=120\sqrt{3}V,and I_{L}=\frac{120}{10}=12A.

 

W_{1}=\left(120\sqrt{3}\right)(12)\cos\left(36.87^{\circ}+30^{\circ}\right)

= 979.75 W,

 

W_{2}=\left(120\sqrt{3}\right)(12)\cos\left(36.87^{\circ}-30^{\circ}\right)

= 2476.25 W.

b)Z_{\phi}= 10 \angle -36.87^{\circ}\Omega,V_{L}=120\sqrt{3}V,and I_{L}=\frac{120}{10}=12A.

 

W_{1}=\left(120\sqrt{3}\right)(12)\cos\left(-36.87^{\circ}+30^{\circ}\right)

= 2476.25 W,

 

W_{2}=\left(120\sqrt{3}\right)(12)\cos\left(-36.87^{\circ}-30^{\circ}\right)

= 979.75 W.

c)Z_{\phi}= 5\left(1+j\sqrt{3}\right)=10\angle 60^{\circ}\Omega,V_{L}=120\sqrt{3}V,and I_{L}=12A.

 

W_{1}=\left(120\sqrt{3}\right)(12)\cos\left(60^{\circ}+30^{\circ}\right)= 0,

 

W_{2}=\left(120\sqrt{3}\right)(12)\cos\left(60^{\circ}-30^{\circ}\right)

= 2160 W.

d)Z_{\phi}= 10 \angle -75^{\circ}\Omega,V_{L}=120\sqrt{3}V,and I_{L}=12A.

 

W_{1}=\left(120\sqrt{3}\right)(12)\cos\left(-75^{\circ}+30^{\circ}\right)= 1763.63 W,

 

W_{2}=\left(120\sqrt{3}\right)(12)\cos\left(-75^{\circ}-30^{\circ}\right)= -645.53 W.

 

e) P_{T}\left(a\right)=3(12)^{2}(8) = 3456 W,

 

W_{1}+W_{2}=979.75 + 2476.25= 3456 W,

 

P_{T}\left(b\right)=P_{T}\left(a\right)= 3456 W,

 

W_{1}+W_{2}=2476.25 + 979.75= 3456 W,

 

P_{T}\left(c\right)=3(12)^{2}(5) = 2160 W,

 

W_{1}+W_{2}=0 +2160 = 2160 W,

 

P_{T}\left(d\right)=3(12)^{2}(2.5882) = 1118.10 W,

 

W_{1}+W_{2}= 1763.63 – 645.53 = 1118.10 W.

Related Answered Questions