Question 11.44: The two pulleys attached to the shaft are loaded as shown. I...

The two pulleys attached to the shaft are loaded as shown. If the bearings at A and B exert only vertical forces on the shaft, determine the required diameter of the shaft to the nearest  \frac{1}{8}  in. using the maximum-distortion energy theory. \sigma_{\text {allow }}=67 \mathrm{ksi}.

 

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Section just to the left of point C is the most critical. Both states of stress will yield the same result.

\sigma_{a, b}=\frac{\sigma}{2} \pm \sqrt{\left(\frac{\sigma}{2}\right)^{2}+\tau^{2}}

Let \frac{\sigma}{2}=A   and   \sqrt{\left(\frac{\sigma}{2}\right)^{2}+\tau^{2}}=B

\sigma_{a}^{2}=(A+B)^{2} \quad \sigma_{b}^{2}=(A-B)^{2}

 

\sigma_{a} \sigma_{b}=(A+B)(A-B)

 

\sigma_{a}^{2}-\sigma_{a} \sigma_{b}+\sigma_{b}^{2} =A^{2}+B^{2}+2 A B-A^{2}+B^{2}+A^{2}+B^{2}-2 A B

 

=A^{2}+3 B^{2}

 

=\frac{\sigma^{2}}{4}+3\left(\frac{\sigma^{2}}{4}+\tau^{2}\right)

 

=\sigma^{2}+3 \tau^{2}

 

\sigma_{a}^{2}-\sigma_{a} \sigma_{b}+\sigma_{b}^{2}=\sigma_{\text {allow }}^{2}

 

\sigma^{2}+3 \tau^{2}=\sigma_{\text {allow }}^{2} \quad(1)

 

\sigma=\frac{M c}{I}=\frac{M c}{\frac{\pi}{4} c^{4}}=\frac{4 M}{\pi c^{3}}

 

\tau=\frac{T c}{J}=\frac{T c}{\frac{\pi}{2} c^{4}}=\frac{2 T}{\pi c^{3}}

 

From Eq (1)

\frac{16 M^{2}}{\pi^{2} c^{6}}+\frac{12 T^{2}}{\pi^{2} c^{6}}=\sigma_{\text {allow }}^{2}

 

c=\left(\frac{16 M^{2}+12 T^{2}}{\pi^{2} \sigma_{\text {allow }}^{2}}\right)^{1 / 6}=\left(\frac{16((700)(12))^{2}+12((90)(12))^{2}}{\pi^{2}\left((67)\left(10^{3}\right)\right)^{2}}\right)^{1 / 6}

c = 0.544 in .

d = 2  c = 1.087  in

Use  d = 1 \frac{1}{8} \mathrm{in} .

1

Related Answered Questions