Question 11.46: The bearings at A and D exert only y and z components of for...

The bearings at A and D exert only y and z components of force on the shaft. If  \sigma_{\text {allow }}=130 \mathrm{MPa}, determine to the nearest millimeter the smallest-diameter shaft that will support the loading. Use the maximum distortion-energy theory of failure.

 

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The critical moment is at B.

M=\sqrt{(473.7)^{2}+(147.4)^{2}}=496.1 \mathrm{~N} \cdot \mathrm{m}

 

T=150 \mathrm{~N} \cdot \mathrm{m}

Since,

\sigma_{a, b}=\frac{\sigma}{2} \pm \sqrt{\left(\frac{\sigma}{2}\right)^{2}+\tau^{2}}

 

Let \frac{\sigma}{2}=A \quad and \quad \sqrt{\left(\frac{\sigma}{2}\right)^{2}+\tau^{2}}=B

 

\sigma_{a}^{2}=(A+B)^{2} \quad \sigma_{b}^{2}=(A-B)^{2}

 

\sigma_{a} \sigma_{b}=(A+B)(A-B)

 

\sigma_{a}^{2}-\sigma_{a} \sigma_{b}+\sigma_{b}^{2}=A^{2}+B^{2}+2 A B-A^{2}+B^{2}+A^{2}+B^{2}-2 A B

 

=A^{2}+3 B^{2}

 

=\frac{\sigma^{2}}{4}+3\left(\frac{\sigma^{2}}{4}+\tau^{2}\right)

 

=\sigma^{2}+3 \tau^{2}

 

\sigma_{a}^{2}-\sigma_{a} \sigma_{b}+\sigma_{b}^{2} =\sigma_{\text {allow }}^{2}

 

\sigma^{2}+3 \tau^{2}=\sigma_{\text {allow }}^{2}\quad(1)

 

\sigma=\frac{M c}{I}=\frac{M c}{\frac{\pi}{4} c^{4}}=\frac{4 M}{\pi c^{3}}

 

\tau=\frac{T c}{J}=\frac{T c}{\frac{\pi}{2} c^{4}}=\frac{2 T}{\pi c^{3}}

 

From Eq (1)

\frac{16 M^{2}}{\pi^{2} c^{6}}+\frac{12 T^{2}}{\pi^{2} c^{6}}=\sigma_{\text {allow }}^{2}

 

c=\left(\frac{16 M^{2}+12 T^{2}}{\pi^{2} \sigma_{\text {allow }}^{2}}\right)^{1 / 6}

 

\quad=\left(\frac{16(496.1)^{2}+12(150)^{2}}{\pi^{2}\left((130)\left(10^{4}\right)\right)^{2}}\right)^{1 / 6}=0.01712 \mathrm{~m}

 

d = 2  c = 34.3 mm

Use d = 35 mm

2

Related Answered Questions