250-L tank contains propane at 30°C, 90% quality. The tank is heated to 300°C. Calculate the heat transfer during the process
250-L tank contains propane at 30°C, 90% quality. The tank is heated to 300°C. Calculate the heat transfer during the process
T _{ r1 }=0.82 \rightarrow Fig. D.1:
Z _{1}=\left(1- x _{1}\right) Z _{ f1 }+ x _{1} Z _{ g1 }=0.1 \times 0.05+0.9 \times 0.785=0.711Fig D.2: \frac{ h _{1}^{*}- h _{1}}{ RT _{ c }}=0.1 \times 4.43+0.9 \times 0.52=0.911
\begin{aligned}& P _{ r }^{ SAT }=0.30 P _{1}^{ SAT }=1.275 MPa \\& m =\frac{1275 \times 0.25}{0.711 \times 0.18855 \times 303.2}=7.842 kg \\& P _{ r 2}=\frac{7.842 \times Z _{2} \times 0.18855 \times 573.2}{0.25 \times 4250}=\frac{ Z _{2}}{1.254}\end{aligned}at T _{ r 2}=1.55 Trial and error on P _{ r 2}
P _{ r 2}=0.743 \Rightarrow P _{2}=3.158 MPa , \quad Z _{2}=0.94,\left( h ^{*}- h \right)_{2}=0.35 RT _{ C }\begin{aligned}&\left( h _{2}^{*}- h _{1}^{*}\right)=1.6794(300-30) \quad=453.4 kJ / kg \\&\left( h _{1}^{*}- h _{1}\right)=0.911 \times 0.18855 \times 369.8=63.5 kJ / kg \\&\left( h _{2}- h _{2}\right)=0.35 \times 0.18855 \times 369.8=24.4 kJ / kg\end{aligned}
\begin{aligned}Q _{12} &= m \left( h _{2}- h _{1}\right)-\left( P _{2}- P _{1}\right) V =7.842(-24.4+453.4+63.5)-(3158-1275) \times 0.25 \\&=+3862-471= 3 3 9 1 kJ\end{aligned}