Question 12.112: A distributor of bottled propane, C3H8, needs to bring propa...

A distributor of bottled propane, C _{3} H _{8}, needs to bring propane from 350 K, 100 kPa to saturated liquid at 290 K in a steady flow process. If this should be accomplished in a reversible setup given the surroundings at 300 K, find the ratio of the volume flow rates \dot{ V }_{ in } / \dot{ V }_{ out }, the heat transfer and the work involved in the process.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Table A.2:      T _{ ri }=\frac{350}{369.8}=0.946, \quad P _{ ri }=\frac{0.1}{4.25}=0.024

From D.1, D.2 and D.3,

\begin{aligned}& Z _{ i }=0.99 \\&\left( h _{ i }^{*}- h _{ i }\right)=0.1886 \times 369.8 \times 0.03=2.1   kJ / kg \\&\left( s _{ i }^{*}- s _{ i }\right)=0.1886 \times 0.02=0.0038   kJ / kg  K \\& T _{ re }=\frac{290}{369.8}=0.784, \text {   and   } x =0\end{aligned}

From D.1, D.2 and D.3,

P _{ re }=0.22, P _{ e }=0.22 \times 4.25=0.935   MPa \text {    and    } Z _{ e }=0.036

 

\begin{aligned}&\left( h _{ e }^{*} -h _{ e }\right)=0.1886 \times 369.8 \times 4.57=318.6   kJ / kg \\&\left( s _{ e }^{*}- s _{ e }\right)=0.1886 \times 5.66=1.0672   kJ / kg  K \\&\left( h _{ e }^{*}- h _{ i }^{*}\right)=1.679(290-350)=-100.8   kJ / kg\end{aligned}

 

\begin{aligned}&\left( s _{ e }^{*}- s _{ i }^{*}\right)=1.679 \ln \frac{290}{350}-0.1886 \ln \frac{0.935}{0.1}=-0.7373   kJ / kg  K \\&\left( h _{ e }- h _{ i }\right)=-318.6-100.8+2.1=-417.3   kJ / kg \\&\left( s _{ e }- s _{ i }\right)=-1.0672-0.7373+0.0038=-1.8007   kJ / kg  K\end{aligned}

 

\frac{\dot{ V }_{ in }}{\dot{ V }_{ out }}=\frac{ Z _{ i } T _{ i } / P _{ i }}{ Z _{ e } T _{ e } / P _{ e }}=\frac{0.99}{0.036} \times \frac{350}{290} \times \frac{0.935}{0.1}= 3 1 0 . 3

 

\begin{aligned}& w ^{ rev }=\left( h _{ i }- h _{ e }\right)- T _{0}\left( s _{ i }- s _{ e }\right)=417.3-300(1.8007)=- 1 2 2 . 9   kJ / kg \\& q ^{ rev }=\left( h _{ e }- h _{ i }\right)+ w ^{ rev }=-417.3-122.9=- 5 4 0 . 2   kJ / kg\end{aligned}

 

 

A.2.1
A.2.2
D.1
D.2
D.3

Related Answered Questions