A line with a steady supply of octane, C _{8} H _{18}, is at 750 F, 440 lbf / in .^{2} . What is your best estimate for the availability in an steady flow setup where changes in potential and kinetic energies may be neglected?
A line with a steady supply of octane, C _{8} H _{18}, is at 750 F, 440 lbf / in .^{2} . What is your best estimate for the availability in an steady flow setup where changes in potential and kinetic energies may be neglected?
Availability of Octane at T _{ i }=750 F , P _{ i }=440 lbf / in. ^{2}
R = 13.53 ft lbf/lbm-R = 0.017 39 Btu/lbm-R
P _{ ri }=\frac{440}{361}=1.219, T _{ ri }=\frac{1209.7}{1023.8}=1.182From D.2 and D.3:
\begin{aligned}&\left( h _{1}^{*}- h _{1}\right)=0.01739 \times 1023.8 \times 1.15=20.5 Btu / lbm \\&\left( s _{1}^{*}- s _{1}\right)=0.01739 \times 0.71=0.0123 Btu / lbm R\end{aligned}Exit state in equilibrium with the surroundings
Assume T _{0}=77 F , P _{0}=14.7 lbf / in .^{2}
T _{ r 0}=\frac{536.7}{1023.8}=0.524, P _{ r 0}=\frac{14.7}{361}=0.041From D.2 and D.3:
\left( h _{0}^{*}- h _{0}\right)= RT _{ C } \times 5.41=96.3 \text { and } \quad\left( s _{0}^{*}- s _{0}\right)= R \times 10.38=0.1805\begin{aligned}&\left( h _{ i }^{*}- h _{0}^{*}\right)=0.409(1209.7-536.7)=275.3 Btu / lbm \\&\left( s _{ i }^{*}- s _{0}^{*}\right)=0.409 \ln \frac{1209.7}{536.7}-0.01739 \ln \frac{440}{14.7}=0.2733 Btu / lbm R \\&\left( h _{ i }- h _{0}\right)=-20.5+275.3+96.3=351.1 Btu / lbm \\&\left( s _{ i }- s _{0}\right)=-0.0123+0.2733+0.1805=0.4415 Btu / lbm R \\&\psi_{ i }= w ^{ rev }=\left( h _{ i }- h _{0}\right)- T _{0}\left( s _{ i }- s _{0}\right)=351.1-536.7(0.4415)= 1 1 4 . 1 Btu / lbm\end{aligned}