Question 2.2: A particle in the infinite square well has the initial wave ...

A particle in the infinite square well has the initial wave function

Ψ(x,0)=Ax(a-x),      (0≤x≤a),

for some constant A (see Figure 2.3). Outside the well, of course,Ψ=0 . Find Ψ(x,t) .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

First we need to determine A, by normalizing  Ψ(x,0):

1=\int_{0}^{a}\left|\psi (x,0)\right|^{2}dx=\left|A\right| ^{2}\int_{0}^{a} x^{2}(a-x)^{2}dx=\left|A\right|^ {2} \frac {a^{5}}{30}

so

A=\sqrt{\frac{30}{a^{5}}}

The nth coefficient is (Equation 2.40)

c_{n}=\sqrt{\frac{2}{a} }\int_{0}^{a}{\sin{ \left (\frac{n\pi}{a} x\right) }}\psi (x,0) dx                        (2.40)

c_{n}=\sqrt{\frac{2}{a} }\int_{0}^{a}{\sin{ \left (\frac{n\pi}{a} x\right) }} \sqrt{\frac{30}{a^{5} }} x(a-x)dx

=\frac{2\sqrt{15} }{a^{3}} \left[a\int_{0}^{a}{x\sin\left(\frac{n\pi}{a} x\right) }-\int_{0}^{a}{x^{2}\sin\left(\frac{n\pi}{a} x\right)}dx \right]

=\frac{2\sqrt{15} }{a^{3}}\left\{a\left [\left (\frac{a}{n\pi} \right)^{2}\sin\left(\frac{n\pi}{a} x\right) dx-\frac{ax}{n\pi}\cos\left(\frac{n\pi}{a} x\right) \right]|_0^a -\left[2\left(\frac{a}{n\pi} \right) ^{2} x\sin \left(\frac{n\pi}{a} x\right)-\frac{(n\pi x/a)^{2}-2}{(n \pi /a)^{3}}\cos\left( \frac{n \pi}{a} x\right) \right] \mid ^{a}_{0} \right\}

=\frac{2\sqrt{15} }{a^{3}}\left[-\frac{a^{3}}{n\pi}\cos(n\pi ) +a^{3}\frac{(n\pi)^{2}-2}{(n\pi)^{3}}\cos \left(n\pi \right)+a^3 \frac{2}{(n \pi )^3}cos(0) \right]=\frac{4\sqrt{15} }{(n\pi)^{3}} [\cos(0)-\cos(n\pi)]

=\begin{cases}0,&n  even\\ 8\sqrt{15}/ (n\pi)^{3} , &n  odd.\end{cases}

Thus (Equation 2.39):

\psi (x,t)= \sum\limits_{n=1}^{\infty }{c_n\sqrt{\frac{2}{a}} \sin \left(\frac{n\pi}{a}x\right)e^{-i(n^{2}\pi^{2} \hbar t/2ma^{2})t} }                      (2.39)

\psi (x,t)=\sqrt{\frac{30}{a} } \left(\frac{2}{\pi} \right) ^{3}\sum\limits_{n=1,3,5}{\frac{1}{n^{3}} \sin \left(\frac{n\pi}{a}x\right)e^{-in^{2}\pi^{2} \hbar t/2ma^{2}} } .

Related Answered Questions