Question 3.4: A particle of mass m is bound in the delta function well V(x...

A particle of mass m is bound in the delta function well V(x)=-\alpha \delta (x). What is the probability that a measurement of its momentum would yield a value greater than P_{0}=m\alpha /\hbar ^{2} ?

 

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The (position space) wave function is (Equation 2.132)

\Psi (x)=\frac{\sqrt{m\alpha } }{\hbar } e^{-m\alpha |x|/\hbar^2 }; E=-\frac{m\alpha ^2}{2\hbar ^2}             (2.132)

\psi (x,t)=\frac{\sqrt{m\alpha } }{\hbar } e^{-m\alpha |x|/\hbar ^{2}}e^{-iEt/\hbar }

(where E=-m\alpha^{2} /2\hbar ^{2} ). The momentum space wave function is therefore

\phi (p,t)=\frac{1}{\sqrt{2\pi \hbar } } \frac {\sqrt {m \alpha } }{\hbar } e^{-iEt/\hbar }\int_{-\infty } ^{\infty }{e^{-ipx/\hbar }e^{-m\alpha |x|/\hbar ^{2}}}dx= \sqrt {\frac{2}{\pi } }\frac{p^{3/2}_{0} e^{-iEt/\hbar }}{p ^{2}+p^{2}_{0}}

(I looked up the integral). The probability, then, is

\frac{2}{\pi } p^{3}_{0}\int_{p_{0}}^{\infty }{\frac {1}{(p^{2}+p^{2}_{0})^2} }dp=\frac{1}{\pi}\left [\frac {pp _{0}}{p^{2}+p^{2}_{0}}+\tan ^{-1} \left (\frac{p}{p_ {0} } \right) \right]\mid ^{\infty }_ {p_ {0} }= \frac {1}{4}-\frac{1}{2\pi} =0.0908

(again, I looked up the integral).

Related Answered Questions