Question 6.4: a) Find (r^2) for all four of the degenerate n=2 states of a...

a) Find (r^{2}) for all four of the degenerate n=2 states of a hydrogen atom.

(b) Find the expectation value of  r^{2} for an electron in the superposition state

|\psi〉 =\frac{1}{\sqrt{2} }(|200〉-i|211〉

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Equation 6.47 [\left\langle \begin{matrix} \acute{n}\acute{\ell}\acute{m} \begin{vmatrix} \hat{f} \\ \end{vmatrix} n\ell m \\ \end{matrix} \right\rangle =\delta _{\ell \acute{\ell}}\delta _{m \acute{m}}\left\langle \begin{matrix}\acute{n}\ell \begin{Vmatrix} f \\ \end{Vmatrix} n\ell \\ \end{matrix} \right\rangle ] we have, for the states with \ell=1 , the following equality:

\left\langle \begin{matrix} 211\begin{vmatrix} r^ {2} \\ \end{vmatrix} 211 \\ \end{matrix} \right \rangle =\left\langle \begin{matrix} 210\begin {vmatrix} r^{2}\\ \end{vmatrix} 210 \\ \end {matrix} \right \rangle=\left\langle \begin{matrix} 21-1\begin {vmatrix} r^{2}\\ \end{vmatrix} 21-1 \\ \end{matrix} \right\rangle=\left\langle \begin {matrix}21 \begin {Vmatrix} r^{2}\\ \end{Vmatrix} 21 \\ \end{matrix} \right\rangle

To calculate the reduced matrix element we simply pick any one of these expectation values:

\left\langle \begin{matrix}21 \begin {Vmatrix} r^{2}\\ \end{Vmatrix} 21 \\ \end {matrix} \right\rangle =\left\langle \begin {matrix} 210\begin{vmatrix} r^{2}\\ \end {vmatrix} 210 \\ \end{matrix} \right\rangle =\int{r^{2}\begin{vmatrix} \psi_{210}(r)\\ \end{vmatrix}^{2} }d^{3}r=\int_{0}^{\infty }{r^{4}\begin{vmatrix} R_{21}(r)\\ \end{vmatrix} } ^{2}dr\int\begin{vmatrix} Y^{0}_{1}(\theta ,\phi )\\ \end{vmatrix}^{2} d\Omega .

The spherical harmonics are normalized (Equation 4.31 [\int_{0}^{\infty }{\begin{vmatrix} R \\ \end{vmatrix} ^{2}r^{2}} dr=1 and \int_{0}^{\pi}\int_{0}^{2\pi}{} {\begin{vmatrix} Y\\ \end{vmatrix}^{2}\sin\theta } d\theta d\phi =1 ]), so the angular integral is 1, and the radial functions are R_{n\ell} listed in Table 4.7, giving

\left\langle \begin{matrix}21 \begin{Vmatrix} r^{2}\\ \end{Vmatrix} 21 \\ \end{matrix} \right\rangle =\int_{0}^{\infty }r^{4}\frac{1}{24 a^{3}} \frac{r^{2}}{a^{2}}e^{-r/a}dr=30a^{2}

That determines three of the expectation values. The final expectation value is

\left\langle \begin{matrix}20 \begin{Vmatrix} r^{2}\\ \end{Vmatrix} 20 \\ \end{matrix} \right \rangle=\left\langle \begin{matrix} 200\begin {vmatrix} r^{2}\\ \end{vmatrix} 200 \\ \end{matrix} \right\rangle =\int{r^{2}\begin{vmatrix} \psi_{210}(r)\\ \end{vmatrix}^{2} }d^{3}r

=\int_{0}^{\infty }{r^{4}\begin{vmatrix} R_{20}(r)\\ \end{vmatrix} } ^{2}dr\int \begin {vmatrix} Y^{0}_{0}(\theta ,\phi )\\ \end{vmatrix} ^{2} d\Omega .

= \int_{0}^{\infty }r^{4}\frac{1}{2a^{3}} \left (1- \frac{1}{2}\frac{r}{a} \right)^{2}e^{-r/a}dr= 42a^{2}

Summarizing:

\left\langle \begin{matrix} 200\begin{vmatrix} r^{2}\\ \end{vmatrix} 200 \\ \end{matrix} \right\rangle =42a^{2},\left.\begin{matrix}\left\langle \begin {matrix} 211\begin{vmatrix} r^{2}\\ \end{vmatrix} 211 \\ \end{matrix} \right\rangle \\ \left\langle \begin {matrix} 210\begin{vmatrix} r^{2}\\ \end{vmatrix} 210 \\ \end{matrix} \right\rangle \\ \left\langle \begin {matrix} 21-1\begin{vmatrix} r^{2}\\ \end{vmatrix} 21-1 \\ \end{matrix} \right\rangle \end{matrix} \right\} =30a^{2}    (6.48)

(b) Find the expectation value of for an electron in the superposition state

|\psi〉=\frac{1}{\sqrt{2}}(|200〉-i|211〉)

We can expand the expectation value as

〈\psi| r^{2}|\psi〉 = \frac{1}{2 }( 〈 200|+i 〈 211|)r^{2}(| 200〉-i| 211〉)=\frac{1}{2 }(〈 200| r^{2}| 200〉 +i〈 211|r^{2}| 200〉-i〈 200|r^{2}| 211〉+〈 211|r^{2}| 211〉)

From Equation 6.47 we see that two of these matrix elements vanish, and

\left\langle \begin{matrix}\psi\begin{vmatrix} r^{2} \\ \end{vmatrix} \psi\\ \end{matrix} \right \rangle= \frac{1}{2} \left(\left\langle \begin {matrix} 20\begin {Vmatrix} r^{2} \\ \end {Vmatrix} 20\\\end {matrix} \right\rangle +\left \langle \begin {matrix} 21\begin {Vmatrix} r^{2} \\ \end {Vmatrix} 21\\\end {matrix} \right\rangle \right) =36a^{2}      (6.49)

 

L^{0}_{0}(x)=1 L^{2}_{0}(x)=1
L^{0}_{1}(x)=-x+1 L^{2}_{1}(x)=-x+3
L^{0}_{2}(x)=\frac{1}{2}x^{2}-2x+1 L^{2}_{2}(x) = \frac{1}{2}x^{2} -4x +6
L^{1}_{0}(x)=1 L^{3}_{0}(x)=1
L^{1}_{1}(x)=-x+2 L^{3}_{1}(x)=-x+4
L^{1}_{2}(x)=\frac{1}{2}x^{2}-3x+3 L^{3}_{2}(x)=\frac{1}{2}x^{2}-5x+10

 

Related Answered Questions