Question 6.7: A particle of mass m moves in one dimension in a harmonic-os...

A particle of mass m moves in one dimension in a harmonic-oscillator potential:

\hat{H}=\frac{\hat{p}^{2}}{2m} +\frac{1}{2}m\omega^{2}x^{2}

Find the position operator in the Heisenberg picture at time t.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Consider the action of \hat{x}_H on a stationary state \psi_n . (Introducing \psi_n allows us to replace the operator e^{-i\hat{H}t/\hbar}  with the number e^{-iE_n t/\hbar} , since e^{-i\hat{H}t/\hbar}\psi_n= e^{-iE_nt/\hbar}\psi_n.) Writing \hat{x} in terms of raising and lowering operators we have (using Equations 2.62, 2.67 and 2.70)[\psi _{n}(x)=A_{n}(\hat{a} _{+}) ^{n} \psi _{0}(x), with E_{n}=\left(n+\frac{1}{2} \right ) \hbar w],  [\hat{a} _{+}\psi _{n}=\sqrt {n+1} \psi _{n+1}, \hat{a} _{-}\psi _{n}= \sqrt{n}\psi _{n-1}, ],  [x=\sqrt{\frac {\hbar }{2m\omega } } (\hat{a} _{+}+ \hat{a} _{-}) ,\hat{p} =i\sqrt{\frac{\hbar m\omega}{2 } } (\hat{a} _{+}- \hat{a} _{-}))]

 

\hat{x} _{H}(t)\psi _{n}(x)=\hat{U}^{\dagger } (t)\hat{x}\hat{U}(t)\psi _{n}(x)      (6.73)

=e^{i\hat{H}t/\hbar }\sqrt{\frac {\hbar }{2m \omega } } (\hat{a} _{+}+ \hat{a} _{-})e^{-i\hat{H} t/\hbar }\psi _{n}(x)

=\sqrt{\frac {\hbar }{2m\omega } }e^{-iE_{n}t/ \hbar }e^{i\hat{H}t/\hbar }(\hat{a} _{+}+ \hat{a} _{-})\psi _{n}(x)

=\sqrt{\frac {\hbar }{2m\omega } }e^{-iE_{n}t/ \hbar }e^{i\hat{H}t/\hbar }\left[\sqrt{n+1} \psi _{n+1}(x)+\sqrt{n} \psi _{n-1}(x)\right]

=\sqrt{\frac {\hbar }{2m\omega } }e^{-iE_{n}t/ \hbar }\left[\sqrt{n+1} e^{ iE_{n+1} t/\hbar }\psi _{n+1}(x)+\sqrt{n} e^{iE_{n-1}t/\hbar }\psi _{n-1}(x)\right]

=\sqrt{\frac {\hbar }{2m\omega } }\left[ \sqrt {n+1} e^{i\omega t}\psi _{n+1}(x)+\sqrt{n} e^{-i \omega t }\psi _{n-1}(x)\right].

Thus

\hat{x} _{H}(t)=\sqrt{\frac {\hbar }{2m\omega } }\left[e^{i\omega t }\hat{a} _{+}+ e^{-i\omega t }\hat{a} _{-}\right].

Or, using Equation 2.48 [\hat{a} _{\pm }\equiv \frac{1}{\sqrt{2\hbar m \omega } } (\mp i\hat{p} + m \omega x)] to express \hat{a} _ { \pm}  in terms of \hat{x} and \hat{p} ,

\hat{x} _{H}(t)=\hat{x} _{H}(0) \cos(\omega t)+\frac {1}{m\omega } \hat{p}_{H}(0)\sin(\omega t) .    (6.74)

As in Example 6.6 we see that the Heisenberg-picture operator satisfies the classical equation of motion for a mass on a spring.

Related Answered Questions