Question 7.3: Returning to Example 7.2, show that diagonalizing the matrix...

Returning to Example 7.2, show that diagonalizing the matrix W gives the same “good” states we found by solving the problem exactly.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We need to calculate the matrix elements of W. First,

W_{aa}=\int{\int{\psi ^{0}_{a}} }(x,y) \acute{H} \psi ^{0}_{a}(x,y)dxdy=\epsilon m\omega ^{2}\int{\left|\psi _{0}(x)\right| ^{2}}xdx \int{\left|\psi _{0}(y)\right| ^{2}}ydy =0

(the integrands are both odd functions). Similarly,W_{bb}=0 , and we need only compute

W_{ab}=\int{\int{\psi ^{0}_{a}} }(x,y) \acute {H} \psi ^{0}_{b}(x,y)dxdy=\epsilon m \omega ^{2}\int{\psi _{0}(x) }x\psi _{1}(x)dx \int {\psi _{1}(y)}y\psi _{0}(y)dy =0

These two integrals are equal, and recalling (Equation 2.70 [x=\sqrt{\frac{\hbar }{2m\omega } }(\hat{a} _{+}+\hat{a} _{-}) ; \hat{p}=i\sqrt{\frac{\hbar m\omega }{2 } }(\hat{a} _{+}-\hat{a} _{-}) ])

x=\sqrt{\frac{\hbar }{2m\omega } }(a_{+}+a_{-})

we have

W_{ab}=\epsilon m\omega ^{2}\left [\int {\psi _{0}(x) }\sqrt{\frac{\hbar }{2m\omega } } (a_{+}+a_{-}) \psi _{1}(x)dx \right]^{2} =\epsilon \frac{\hbar \omega}{2} \left[\int{\psi _{0}(x) \psi _{0}(x) } dx \right]^{2}=\epsilon \frac{\hbar \omega}{2}

Therefore, the matrix W is

W=\epsilon \frac{\hbar \omega}{2}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.

The (normalized) eigenvectors of this matrix are

\frac{1}{\sqrt{2} } \begin{pmatrix} 1 \\ 1 \end {pmatrix} and \frac{1}{\sqrt{2} } \begin {pmatrix} -1 \\ 1 \end{pmatrix}

These eigenvectors tell us which linear combination of \psi^{0}_{a} and \psi^{0}_{b} are the good states:

\psi^{0}_{\pm}=\frac{1}{\sqrt{2} } \left( \psi^{0}_{b} \pm \psi ^{0}_{a}\right)           (7.23)

just as in Equation 7.23. The eigenvalues of the matrix W ,

E^{1}=\pm\epsilon \frac{\hbar \omega }{2}

give the first-order corrections to the energy (compare 7.33).

E_{\pm}^1=\frac{1}{2}\left[W_{aa}+W_{ab}\pm \sqrt{(W_{aa}-W_{bb})^2+4|W_{ab}|^2}\right] .                        (7.33)

Related Answered Questions