Question 7.3: Returning to Example 7.2, show that diagonalizing the matrix...

Returning to Example 7.2, show that diagonalizing the matrix W gives the same “good” states we found by solving the problem exactly.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We need to calculate the matrix elements of W. First,

Waa=ψa0(x,y)Hˊψa0(x,y)dxdy=ϵmω2ψ0(x)2xdxψ0(y)2ydy=0W_{aa}=\int{\int{\psi ^{0}_{a}} }(x,y) \acute{H} \psi ^{0}_{a}(x,y)dxdy=\epsilon m\omega ^{2}\int{\left|\psi _{0}(x)\right| ^{2}}xdx \int{\left|\psi _{0}(y)\right| ^{2}}ydy =0

(the integrands are both odd functions). Similarly,Wbb=0W_{bb}=0 , and we need only compute

Wab=ψa0(x,y)Hˊψb0(x,y)dxdy=ϵmω2ψ0(x)xψ1(x)dxψ1(y)yψ0(y)dy=0W_{ab}=\int{\int{\psi ^{0}_{a}} }(x,y) \acute {H} \psi ^{0}_{b}(x,y)dxdy=\epsilon m \omega ^{2}\int{\psi _{0}(x) }x\psi _{1}(x)dx \int {\psi _{1}(y)}y\psi _{0}(y)dy =0

These two integrals are equal, and recalling (Equation 2.70 [x=2mω(a^++a^);p^=imω2(a^+a^)][x=\sqrt{\frac{\hbar }{2m\omega } }(\hat{a} _{+}+\hat{a} _{-}) ; \hat{p}=i\sqrt{\frac{\hbar m\omega }{2 } }(\hat{a} _{+}-\hat{a} _{-}) ])

x=2mω(a++a)x=\sqrt{\frac{\hbar }{2m\omega } }(a_{+}+a_{-})

we have

Wab=ϵmω2[ψ0(x)2mω(a++a)ψ1(x)dx]2=ϵω2[ψ0(x)ψ0(x)dx]2=ϵω2W_{ab}=\epsilon m\omega ^{2}\left [\int {\psi _{0}(x) }\sqrt{\frac{\hbar }{2m\omega } } (a_{+}+a_{-}) \psi _{1}(x)dx \right]^{2} =\epsilon \frac{\hbar \omega}{2} \left[\int{\psi _{0}(x) \psi _{0}(x) } dx \right]^{2}=\epsilon \frac{\hbar \omega}{2}

Therefore, the matrix W is

W=ϵω2(0110).W=\epsilon \frac{\hbar \omega}{2}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.

The (normalized) eigenvectors of this matrix are

12(11)and12(11)\frac{1}{\sqrt{2} } \begin{pmatrix} 1 \\ 1 \end {pmatrix} and \frac{1}{\sqrt{2} } \begin {pmatrix} -1 \\ 1 \end{pmatrix}

These eigenvectors tell us which linear combination of ψa0\psi^{0}_{a} and ψb0\psi^{0}_{b} are the good states:

ψ±0=12(ψb0±ψa0)\psi^{0}_{\pm}=\frac{1}{\sqrt{2} } \left( \psi^{0}_{b} \pm \psi ^{0}_{a}\right)           (7.23)

just as in Equation 7.23. The eigenvalues of the matrix W ,

E1=±ϵω2E^{1}=\pm\epsilon \frac{\hbar \omega }{2}

give the first-order corrections to the energy (compare 7.33).

E±1=12[Waa+Wab±(WaaWbb)2+4Wab2].E_{\pm}^1=\frac{1}{2}\left[W_{aa}+W_{ab}\pm \sqrt{(W_{aa}-W_{bb})^2+4|W_{ab}|^2}\right] .                        (7.33)

Related Answered Questions