We need to calculate the matrix elements of W. First,
W a a = ∫ ∫ ψ a 0 ( x , y ) H ˊ ψ a 0 ( x , y ) d x d y = ϵ m ω 2 ∫ ∣ ψ 0 ( x ) ∣ 2 x d x ∫ ∣ ψ 0 ( y ) ∣ 2 y d y = 0 W_{aa}=\int{\int{\psi ^{0}_{a}} }(x,y) \acute{H} \psi ^{0}_{a}(x,y)dxdy=\epsilon m\omega ^{2}\int{\left|\psi _{0}(x)\right| ^{2}}xdx \int{\left|\psi _{0}(y)\right| ^{2}}ydy =0 W a a = ∫ ∫ ψ a 0 ( x , y ) H ˊ ψ a 0 ( x , y ) d x d y = ϵ m ω 2 ∫ ∣ ψ 0 ( x ) ∣ 2 x d x ∫ ∣ ψ 0 ( y ) ∣ 2 y d y = 0
(the integrands are both odd functions). Similarly,W b b = 0 W_{bb}=0 W b b = 0 , and we need only compute
W a b = ∫ ∫ ψ a 0 ( x , y ) H ˊ ψ b 0 ( x , y ) d x d y = ϵ m ω 2 ∫ ψ 0 ( x ) x ψ 1 ( x ) d x ∫ ψ 1 ( y ) y ψ 0 ( y ) d y = 0 W_{ab}=\int{\int{\psi ^{0}_{a}} }(x,y) \acute {H} \psi ^{0}_{b}(x,y)dxdy=\epsilon m \omega ^{2}\int{\psi _{0}(x) }x\psi _{1}(x)dx \int {\psi _{1}(y)}y\psi _{0}(y)dy =0 W a b = ∫ ∫ ψ a 0 ( x , y ) H ˊ ψ b 0 ( x , y ) d x d y = ϵ m ω 2 ∫ ψ 0 ( x ) x ψ 1 ( x ) d x ∫ ψ 1 ( y ) y ψ 0 ( y ) d y = 0
These two integrals are equal, and recalling (Equation 2.70 [ x = ℏ 2 m ω ( a ^ + + a ^ − ) ; p ^ = i ℏ m ω 2 ( a ^ + − a ^ − ) ] [x=\sqrt{\frac{\hbar }{2m\omega } }(\hat{a} _{+}+\hat{a} _{-}) ; \hat{p}=i\sqrt{\frac{\hbar m\omega }{2 } }(\hat{a} _{+}-\hat{a} _{-}) ] [ x = 2 m ω ℏ ( a ^ + + a ^ − ) ; p ^ = i 2 ℏ m ω ( a ^ + − a ^ − ) ] )
x = ℏ 2 m ω ( a + + a − ) x=\sqrt{\frac{\hbar }{2m\omega } }(a_{+}+a_{-}) x = 2 m ω ℏ ( a + + a − )
we have
W a b = ϵ m ω 2 [ ∫ ψ 0 ( x ) ℏ 2 m ω ( a + + a − ) ψ 1 ( x ) d x ] 2 = ϵ ℏ ω 2 [ ∫ ψ 0 ( x ) ψ 0 ( x ) d x ] 2 = ϵ ℏ ω 2 W_{ab}=\epsilon m\omega ^{2}\left [\int {\psi _{0}(x) }\sqrt{\frac{\hbar }{2m\omega } } (a_{+}+a_{-}) \psi _{1}(x)dx \right]^{2} =\epsilon \frac{\hbar \omega}{2} \left[\int{\psi _{0}(x) \psi _{0}(x) } dx \right]^{2}=\epsilon \frac{\hbar \omega}{2} W a b = ϵ m ω 2 [ ∫ ψ 0 ( x ) 2 m ω ℏ ( a + + a − ) ψ 1 ( x ) d x ] 2 = ϵ 2 ℏ ω [ ∫ ψ 0 ( x ) ψ 0 ( x ) d x ] 2 = ϵ 2 ℏ ω
Therefore, the matrix W is
W = ϵ ℏ ω 2 ( 0 1 1 0 ) . W=\epsilon \frac{\hbar \omega}{2}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. W = ϵ 2 ℏ ω ( 0 1 1 0 ) .
The (normalized) eigenvectors of this matrix are
1 2 ( 1 1 ) a n d 1 2 ( − 1 1 ) \frac{1}{\sqrt{2} } \begin{pmatrix} 1 \\ 1 \end {pmatrix} and \frac{1}{\sqrt{2} } \begin {pmatrix} -1 \\ 1 \end{pmatrix} 2 1 ( 1 1 ) a n d 2 1 ( − 1 1 )
These eigenvectors tell us which linear combination of ψ a 0 \psi^{0}_{a} ψ a 0 and ψ b 0 \psi^{0}_{b} ψ b 0 are the good states:
ψ ± 0 = 1 2 ( ψ b 0 ± ψ a 0 ) \psi^{0}_{\pm}=\frac{1}{\sqrt{2} } \left( \psi^{0}_{b} \pm \psi ^{0}_{a}\right) ψ ± 0 = 2 1 ( ψ b 0 ± ψ a 0 ) (7.23)
just as in Equation 7.23. The eigenvalues of the matrix W ,
E 1 = ± ϵ ℏ ω 2 E^{1}=\pm\epsilon \frac{\hbar \omega }{2} E 1 = ± ϵ 2 ℏ ω
give the first-order corrections to the energy (compare 7.33).
E ± 1 = 1 2 [ W a a + W a b ± ( W a a − W b b ) 2 + 4 ∣ W a b ∣ 2 ] . E_{\pm}^1=\frac{1}{2}\left[W_{aa}+W_{ab}\pm \sqrt{(W_{aa}-W_{bb})^2+4|W_{ab}|^2}\right] . E ± 1 = 2 1 [ W a a + W a b ± ( W a a − W b b ) 2 + 4 ∣ W a b ∣ 2 ] . (7.33)