Question 4.3: A hollow LEHI cylinder has an inner radius a=15 mm, an outer...

A hollow LEHI cylinder has an inner radius a=15 mm, an outer radius c=20 mm, and a length L=0.5 m. The applied torque T is 600 Nm with an angle of twist \Delta \theta (z=L)=3.57^{\circ }. Calculate \sigma ^{\prime }_{z\theta })_{\max } and \sigma ^{\prime }_{zz})_{\max } , find the value of the shear modulus G, and calculate \varepsilon ^{\prime }_{z\theta })_{\max } and \varepsilon _{zz}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Eqs. (4.37) and (4.40),

                          \sigma _{1}=+\frac{Tr}{J}    and \sigma _{2}=-\frac{Tr}{J},                                            (4.37)

 

                          \sigma ^{\prime }_{z\theta })_{\max /\min }=\sqrt{\left(\frac{\sigma _{\theta \theta }-\sigma _{zz}}{2} \right)^{2}+\sigma ^{2}_{z\theta } }\rightarrow \sigma ^{\prime }_{z\theta })_{\max /\min }=\pm \frac{Tr}{J},                 (4.40)

 

                     \sigma ^{\prime }_{z\theta })_{\max }=\frac{Tr}{J}           and           \sigma ^{\prime }_{zz })_{\max }=\frac{Tr}{J},

where

                       J=\int{r^{2}dA}=\iint{r^{2}rd\theta dr}=\int_{0}^{2\pi }{} \int_{a}^{c}{r^{3}drd\theta }=\frac{\pi }{2}(c^{4}-a^{4}).

Given

a=15 mm=0.015 m

c=20 mm=0.02 m

L=0.5 m

T=600 Nm

\Delta \theta =3.57^{\circ }=0.0623 rad

first calculate \sigma ^{\prime }_{z\theta })_{\max } and \sigma ^{\prime }_{zz })_{\max }:

     \sigma ^{\prime }_{z\theta })_{\max } and  \sigma ^{\prime }_{zz })_{\max }=\frac{Tc}{\pi (c^{4}-a^{4})/2}=\frac{2(600Nm)(0.02m)}{\pi \left[(0.02 m)^{4}-(0.015 m)^{4}\right] }

 

                                                                       \cong 6.98\times 10^{7}\frac{N}{m^{2}}=69.8 MPa.

Second, calculate G. Assuming \gamma_{c}\ll 1, we have

           \tan \gamma _{c}\cong \gamma _{c}=c\frac{d\theta }{dz}\cong c\frac{\Delta \theta }{\Delta z}=\frac{(0.02m)(0.0623 rad)}{(0.5m)}=0.00249 rad.

Hence, \sigma _{z\theta }(r=c)=2G\varepsilon _{z\theta }(r=c)=G\gamma _{c} implies that

                       G=\frac{\sigma _{z\theta }}{\gamma _{c}}=\frac{6.98\times 10^{7}N/m^{2}}{0.00249}=2.80\times 10^{10}Pa=28.0  GPa.

Third, calculate \varepsilon ^{\prime }_{z\theta })_{\max } and \varepsilon _{zz} using Hooke’s law:

                                              \varepsilon ^{\prime }_{z\theta })_{\max }=\frac{1}{2G}\sigma ^{\prime }_{z\theta })_{\max }=\frac{69.8MPa}{2(28.0GPa)}=0.00125

and, finally,

                                            \varepsilon _{zz}=\frac{1}{E}\left[\sigma _{zz}-\nu (\sigma _{rr}+\sigma _{\theta \theta })\right]=0.

Thus, the shaft does not extend and the maximum   shear strain is indeed small, consistent with our small-strain assumption in the derivation of the governing  equations and our use of a LEHI descriptor of the  behavior. Also note that in reference to Table A2.1, a shear modulus G \sim 28 GPa suggests that the material is a 2024-T4 aluminum. The yield strength of this  erial is \sim 170 MPa in shear; hence, we would not expect that yield would have occurred.

Material Young’s
modulus(Gpa)
Shear modulus
(GPa)
Density
(kg/m^{3})
\frac{Yield strength (MPa)} {Tension   Shear} \frac{Ultimate strength(MPa)} {Tension        Shear}
Aluminum
2024-T4 73 27.6 2,770 300            170 414              220
6061-T6 70 25.9 2,770 241            138 262              165
Steel
0.2 % Carbon 200 83 7,830 250              165 450              330
0.6 % Carbon 200 83 7,830 415              250 690              550

Related Answered Questions