Question 4.4: A solid circular member is to be subjected to an applied tor...

A solid circular member is to be subjected to an applied torque of 500 Nm. Find the required diameter of the member so as not to exceed the maximum stress \sigma _{z\theta } of 125 MPa.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given

        \sigma _{z\theta } =125,MPa=1.25\times 10^{8}\frac{N}{m^{2}},   T=500Nm;

let the maximum radius r=c. From Eq. (4.27),

                                   \sigma _{z\theta }(r)=\frac{r}{c}\frac{Tc}{J}\rightarrow \sigma _{z\theta }(r)=\frac{Tr}{J}.              (4.27)

 

                                          \sigma _{z\theta }=\frac{Tr}{J}   or  \sigma _{z\theta }(r=c)=\frac{Tc}{J},

where

                                         J=\int{r^{2}dA}=\iint{r^{2}rd\theta dr}=\int_{0}^{2\pi }{}\int_{0}^{c}{r^{3}drd\theta }=\frac{\pi }{2}c^{4}.

Hence,

              \sigma _{z\theta }(c)=\frac{Tc}{(\pi /2)c^{4}}=\frac{2T}{\pi c^{3}}\rightarrow c^{3}=\frac{2T}{\pi \sigma _{z\theta }}\rightarrow c=\left(\frac{2T}{\pi \sigma _{z\theta }} \right)^{1/3},

or

                        c=\left(\frac{2(500Nm)}{\pi (1.25\times 10^{8}N/m^{2})} \right)^{1/3}=0.0137m=13.7mm,

and thus the minimum allowable diameter is 2c=27.4 mm,  which is just over 1 in.

Related Answered Questions