Question 1.9: Use Boolean algebra and de Morgan's theorem for two variable...

Use Boolean algebra and de Morgan’s theorem for two variables, \overline{A+B} =\overline{A}\cdot \overline{B} , to show that the form given in Equation 1.16

\overline{A+B} =\overline{A} \cdot \overline{B} \Rightarrow \overline{A+B+C+...} =\overline{A} \cdot \overline{B} \cdot \overline{C} ... for three variables is also true.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\overline{A+B+C} =\overline{(A+B)+C}   associative law

                                    =\overline{(A+B)} ·\overline{C}  De Morgan’s theorem

                                    =(\overline{A}·\overline{B} ) ·\overline{C}  De Morgan’s theorem

                                    =\overline{A}·\overline{B} ·\overline{C} associative law

Related Answered Questions